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Abstract

We study the novelty game, a combinatorial problem in which pk integers from [1, N ] are
distributed evenly among p non-communicating players, who each output m numbers. They
players must collectively ensure that at least one of them outputs a number not in the original
list. Focusing on oblivious strategies, we propose a new framework for novelty games and then
introduce a sequence of six optimizations based off that framework. These optimizations lead to
an improvement on the upper bound compared to the previous state of the art. More specifically,
we improve the bound for the (3, 2, 1) game from approximately 1.71× 106 to 193,050, which is
a reduction of over 99.8%. Our techniques also lead to exponential improvements in the general

(p, k, 1) game, with a reduction of e2k
p
2
∏p−1

i=0 (k
i)!. We also provide two conjectures on the lower

bounds of the novelty game and conjecture that our upper bound is tight up to subexponential
factors.
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1 Introduction

The novelty game [LS24] is a combinatorial problem where p non-communicating players each receive
k inputs from [1, N ] and produce m outputs, also from [1, N ]. In order to win, novelty must hold
across all possible inputs. In other words, in every possible case, at least one of the players has to
produce an output that is novel (outside of the pk inputs).

We call this the (p, k,m) novelty game, and our goal is to reduce the upper bound on N ,
denoted B(p, k,m). Note that we focus on single-attempt novelty games, i.e. improving B(p, k, 1).

Remark 1. Although novelty games are defined quite simply, determining precise upper and lower
bounds on N remains a challenging task. Try analyzing the (2, 2, 1) game yourself to see if you can
find and prove the bound on N .

Novelty games generalize paradoxical tournaments [LS24] and relate to various existing mathemat-
ical problems. Thus, they are a powerful tool for studying computational complexity, designing faster
algorithms, producing explicit constructions that expose computational limits, and modeling non-
communicating agents in distributed algorithms and graph theory [VW23][RSW22][GGNS23][APY10][AS10].

Contributions. We improve the oblivious bound B(p, k, 1) significantly, reducing B(3, 2, 1) from
157 ≈ 171 million to 193,050 (a 99.8% reduction) via six optimizations: input avoidance, cycle
avoidance, reordering ancestors, merging equivalent ancestors, merging neighboring ancestors, and
pruning unused outputs. We also conjecture that our oblivious bound is tight up to subexponential
factors and discuss the lower bounds of novelty games briefly.

Paper Organization. Section 2 provides preliminaries, Section 3 states main theorems and
results, Section 4 provides the optimization framework that we use as a foundation, Section 5
to Section 10 detail optimizations, Section 11 provides the combined optimization results, and
Section 12 concludes with future directions. Algorithms are detailed in Appendix A and some
input/output examples are provided in Appendix B.

2 Preliminaries

2.1 Notation

This section presents the notation, definitions, and known results that form the foundation of our
work. Generally, we try to use the same notation as [LS24], which we are building off of.

Recall that we denote upper bounds on N in general as B(p, k, 1). Since we propose multiple
optimizations to the original bound in [LS24], we denote the original bound by B0(p, k, 1). We then
use Bi(p, k, 1) for 1 ≤ i ≤ 6 to denote the improved bound after Optimization i.

We denote the set of vertices by V and the set of directed edges by E, so (V,E) is a graph
representation of the novelty game. We use R(V ) to represent the range of the input set V , that is,
the set of all output vertices.

When all players use the same strategy, we say that is an oblivious strategy. Otherwise, we
say it is a non-oblivious strategy. The oblivious bound is generally weaker than the non-oblivious
bound, as any oblivious strategy can be considered a special case of some non-oblivious strategy.

We should also note that novelty games can be interpreted as graphs, as this is important for
understanding the results in [LS24]. Under this interpretation, each number is treated as a vertex in
a graph: when an input number x is used to create an output z, we draw a directed edge from x to z.
However, we also introduce a new framework that makes it simpler to understand our optimizations.
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A winning strategy S for the novelty game on X = [N ] is a function S : Xk → X such that for
every input tuple (x1, . . . , xk) ∈ Xk, the output S(x1, . . . , xk) satisfies S(x1, . . . , xk) /∈ {x1, . . . , xk}.
Each player applies the same strategy S to their k inputs, and the strategy is winning if, for every
possible input list E ⊆ X of size pk partitioned among the p players, at least one player outputs a
novel value not in E.

We also define the notion of cycles in novelty games. Suppose an input x is given to Player
1, who produces an output z that becomes the input to Player 2. This process continues so that
each Player i receives the output of Player i− 1 as input. If, after L steps, the output of Player L
equals the original input x, we call this an L-cycle. As shown in the key lemma for establishing
winning strategies from [LS24], any winning strategy for a (p, k,m) game must prevent the existence
of L-cycles for 1 ≤ L ≤ p.

Similar to [LS24], we also use

f(k, d) = 1 + k + k2 + · · ·+ kd−1 =
kd − 1

k − 1

throughout our paper. We further introduce

q = f(k, p+ 1) =
kp+1 − 1

k − 1

and

r = f(k, p) =
kp − 1

k − 1

for convenience. In other words, q is the range of each digit, while r is the number of digits in each
input. In the (3, 2, 1) game, we have q = 1 + 2 + 4 + 8 = 15 and r = 1 + 2 + 4 = 7, leading to a
bound of qr = 157.

If a player receives input x and produces output z, we say that x is the parent of z, and z is the
child of x. This terminology naturally extends to grandparents, grandchildren, and more generally to
ancestors and descendants. Parents are also referred to as first-level ancestors, while grandparents
are second-level ancestors.

There is only one type of oblivious strategy that is known so far, and we refer to it as the ancestor-
bookkeeping strategy. This was first brought up in [LS24]. Such a strategy encodes information
about a set of ancestors from levels 1 to p− 1 directly within the number itself. This information
is then used to distinguish the number from all the necessary ancestors. More specifically, each
number is structured as a sequence of last-digit groups, corresponding to different ancestor levels.
The maximum number of ancestors at level i is at most ki, and we must retain all ancestor levels
from 0 to p− 1 to avoid L-cycles for 0 < L ≤ p. The total number of digits in each number is given
by the sum kp−1 + kp−2 + · · ·+ k2 + k + 1 = f(k, p). For convenience, we denote the group of digits
at level i as Ai, so a number x takes the form Ap−1Ap−2 . . . A1A0. See Figure 1 for an illustration,
which includes the number of digits within each ancestor group.

Figure 1: The ancestor groups in a number x

number x Ap−1 Ap−2 · · · Ai · · · A2 A1 A0

# of digits kp−1 kp−2 · · · ki · · · k2 k 1

We use
⊕

to denote concatenation, so a number x can be written as x =
⊕p−1

i=0 Ai(x). Since
A0 consists of a single digit, we sometimes refer to it as m, m(x), or mx. The remaining digits,
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Ap−1Ap−2 . . . A1, are collectively denoted by A(x), so that A(x) =
⊕p−1

i=1 Ai(x). We refer to A(x)
as the ancestor digits of x. In the specific case of the (3, 2, 1) game, each number has the form
A2A1A0, where A2 represents the grandparent and A1 the parent. For convenience, we also denote
them as G and P , respectively, so a number takes the form GPm.

Note that we frequently let x and y be inputs, z be the output, a be a child of z, and b be a
child of a (and a grandchild of z). If Ai(x) contributes to the construction of Ai+1(z), then we
have the relation Ai(x) ⊆ Ai+1(z). In other words, the ancestor digits at level i of each input are
concatenated to form the level i+ 1 ancestor group of the output.

We write Ai(x) ≻ Ai+1(z) (read as ”Ai(x) converts to Ai+1(z)”) to indicate that the ancestor
group Ai(x) becomes part of the group Ai+1(z) after one additional player. We extend this notion
to multiple players: Ai(x) ≻ Aj(u) means that Ai(x) eventually becomes part of Aj(u) (the ancestor
group of some descendant u) after j − i > 0 steps. Conversely, we write Ai(x) ̸≻ Aj(u) to indicate
that such a conversion is not possible after j − i > 0 players. We also note that the ancestor group
convertibility relation Ai(x) ≻ Aj(u) depends on the specific ancestor-bookkeeping algorithm used
in the strategy. For example, see the change from Equation 13 to Equation 14.

In ancestor-bookkeeping strategies, each number consists of multiple digits, with a designated
digit range for each position to allow for novelty. We denote this digit range by D(p, k). This digit
range is calculated from the contributions of various cycle avoidance. We will use C(L) to denote
the contribution from L-cycle avoidance, where the corresponding p and k are fixed. We also use
s = ⌈p2⌉ − 1 when convenient.

In the case of the (3, 2, 1) game, each number x is represented as a 7-digit array x7x6x5x4x3x2x1
[LS24]. We make use of this representation when convenient, so note that we have:

• x1 = mx is the unique last digit of x,

• x3x2 = Px = A1(x) are the parent digits (from the two parents of x),

• x7x6x5x4 = Gx = A2(x) are the grandparent digits (from the four grandparents of x).

For convenience, we occasionally use v (from [LS24]) and mx interchangeably throughout the
paper. We also define #d(S) as the number of occurrences of digit d in the sequence S. This count
will be used in the criteria for checking convertibility relations of the form Ai(x) ≻ Aj(u).

2.2 Related Work

The novelty game is similar to other mathematical problems such as the MISSING-STRING problem
[VW23] and the range avoidance problem [RSW22][GGNS23]. It is also similar to the Nearest
Codeword Problem and the Remote Point Problem, as mentioned in [APY10] and [AS10]. These
problems can be used to study the computational complexity of a system, propose faster algorithms
for these complex systems, and are even useful in finding explicit constructions that demonstrate
the limitations of computation. The novelty game also generalizes paradoxical tournaments in the
case of p = 2, and thus has applications in distributed algorithms and graph theory, where players
model non-communicating agents.

The novelty game is known to be a generalization of the paradoxical tournament game (https://
en.wikipedia.org/wiki/Tournament_(graph_theory)#Paradoxical_tournaments). This was
shown in [LS24]. More specifically, when p = 2, it is known that the novelty game is the same as
the k-paradoxical tournament game, and they have the same bounds.

There have been numerous existing results regarding paradoxical tournaments and their bounds.
Paul Erdős had the first result of B(2, k, 1) ≤ O(k22k) using the probabilistic method [Erd63].

George and Esther Szekeres improved this bound to B(2, k, 1) ≤ (k + 2)2k−1 − 1 [SS65]. Graham
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and Spencer gave a new bound of B(2, k, 1) ≤ O(k222k−2) which is nearly the square of the Erdős
bound in [Erd63], but they also provided an explicit construction method by using the Paley digraph
[GS71]. Although this new constructive bound is asymptotically worse than the non-constructive
Erdős bound, explicit constructions using Paley digraphs often lead to significantly smaller values
than the general O(k222k−2) bound.

Reid et al. [RMHH04] studied minimal dominating sets and maximal irredundant sets in
tournaments, establishing both lower and upper bounds for several graph problems, including the k-
paradoxical tournament problem. The webpage https://www.ttested.com/paradoxical-tournaments/
provides a helpful summary of known bounds for paradoxical tournaments. Table 1, adapted from
the above webpage, presents several existing bounds for k-paradoxical tournament games. Here, LB
stands for Lower Bound, UB for Upper Bound, and ? indicates that the value is unknown. We also
add a new column labeled “Paley UB,” based on OEIS sequence A362137 [OEI24], which reports
bounds obtained via the Paley digraph construction. These bounds are often the smallest known
upper bounds.

Note that B(2, 2, 1) = 7 and B(2, 3, 1) = 19 have been proven to be optimal bounds for
k-paradoxical tournaments. However, the optimal bounds for k > 3 remain an open question.

Table 1: The existing bounds for k-paradoxical tournament games

k Erdos LB Szekeres LB Optimal Paley UB Erdos UB Graham UB

1 3 2 3 3 3 3
2 7 7 7 7 21 19
3 15 19 19 19 91 151
4 31 47 ? 67 149 1031
5 63 111 ? 331 353 6427

We notice that the existing methodology used works well for B(2, k, 1), but does not work when
p > 2. However, they are still very useful in understanding novelty games and the existing bounds
on novelty games. Next, we will briefly describe the existing results from [LS24] for novelty games.

2.3 Known General Bounds of Novelty Games

For oblivious strategies, the existing bound from [LS24] is

B0(p, k, 1) ≤ f(k, p+ 1)f(k,p) = qr.

As an example, when (p, k) = (3, 2), this gives B(3, 2, 1) ≤ 157 ≈ 1.71 × 108. For non-oblivious
strategies, tighter bounds can be achieved. From [LS24], we have that

B(p, k, 1) ≤ B(2, k, 1)k
p−2

or B(p, k, 1) ≤ (13k3 · 2k)kp−2
.

Oblivious strategies are generally preferred due to their simplicity and structure. Thus, we focus on
improving the oblivious bound B0(p, k, 1) through several optimization techniques.
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3 Main Theoretical Results

3.1 Improved Oblivious Bound

Theorem 1. The oblivious bound for novelty games is improved to: B(p, k, 1) ≤
∏p−1

i=0

(D(p,k)
ki

)
,

where D(p, k) is given by Equation 10. This is roughly e2k
p
2
∏p−1

i=0 (k
i)! times smaller than qr.

This bound, achieved through multiple optimizations that we describe in Section 5–10, signif-
icantly reduces the upper bound on N . For example, the upper bound for the (3, 2, 1) game is
reduced from 157 to 193,050.

This makes the strategy more practical for combinatorial applications.

3.2 Conjectures

Conjecture 1. For oblivious ancestor-bookkeeping strategies with p > 2 players, the lower bound is
B(p, k, 1) ≥

∏p−1
i=0

(
kp+1
ki

)
.

Conjecture 2. For all strategies (oblivious and non-oblivious) with p ≥ 2 players, the lower bound
is B(p, k, 1) ≥ B(2, k, 1)k

p−2
.

These conjectures are about lower bounds of novelty games, which are not well studied yet.
They suggest our improved oblivious bound is near-tight and motivate future work on lower bounds.

4 Framework

4.1 Overview of Optimizations

We propose six optimizations to reduce B(p, k, 1):

1. input avoidance

2. cycle avoidance

3. reordering ancestors

4. merging equivalent ancestors

5. merging neighboring ancestors

6. pruning unused outputs

We use B(3, 2, 1) as a running example, and overall we reduce the bound from 157 ≈ 171 million
to 193,050.

4.2 Existing Strategy

The existing oblivious bound [LS24] is B(p, k, 1) ≤ qr, where q and r are defined in Subsection 2.1.
Let us first briefly describe the ancestor-bookkeeping oblivious strategy proposed by [LS24] to

help understand how the existing B(3, 2, 1) bound is calculated. In order to achieve the novelty
property, the original oblivious strategy keeps track of the last digits of some of its ancestors,
stored in the number itself. Intuitively, each number is treated as a stack of last-digit sets, located
at different ancestor levels. These ancestor levels are blocks of digits in the number itself. The
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maximum number of ancestors at a level i is at most ki, and we need to keep all the ancestor levels
from 0 to p− 1 to avoid L-cycles for 0 < L ≤ p.

We briefly describe the existing strategy in Algorithm 3, which is presented in more depth in
[LS24]. When a player receives k inputs, their ancestor groups at level Ai are concatenated to form
the Ai+1 group of the output number by Algorithm 1. In other words, if x is an input and z is the
output, then Ai(x) ≻ Ai+1(z). This process determines all digits of the output number except the
last one, A0(z). The final digit A0(z) or m(z) is then selected to differ from the last digits of all its
ancestors by Algorithm 2, ensuring novelty.

In the case of (3, 2, 1), each number is in the form of A2A1A0, with |A2| = 4, |A1| = 2, |A0| = 1.
There are two inputs, so there are 23 + 22 + 21 = 14 ancestors across the three levels. Adding one
additional digit for the player’s own output gives a required range of 14 + 1 = 15. Each number
consists of 22 + 21 + 1 = 7 digits, so the total number of distinct numbers is 157 = 170,859,375,
or approximately 171 million. This example is computed using the ancestor-bookkeeping strategy
implemented in Algorithm 1, which also serves as the baseline strategy described in Algorithm 3
that we later optimize.

Another way to think about it, which is directly described in [LS24], is as follows: Let x =
x7x6x5x4x3x2x1 and y = y7y6y5y4y3y2y1 be two 7-digit input numbers. The digits of these are then
used to produce the output:

z = x3x2y3y2x1y1v. (1)

As when x and y are known, the first 6 digits of z are determined, we simply have to choose the
last digit mz to guarantee novelty.

Let’s present one example for the (3, 2, 1) novelty game to demonstrate the rule. We will use
hexadecimal digits A,B,C,D,E, F to stand for digits 10, 11, 12, 13, 14, 15 respectively. The example
in Figure 11 has two inputs x = 0123456 and y = EDCBA98, and the output is z = 45A9687. The
output z has a unique last digit 7 to guarantee that it is a distinct number from all its ancestors.

We propose multiple optimizations based on the existing ancestor bookkeeping strategy. Our
proposed optimizations keep the ancestor bookkeeping behavior and slightly modify the algorithm
to bookkeep the ancestors and to select the last digit more carefully, in order to reduce the total
number of valid outputs and thus the oblivious bound too.

4.3 Theoretical Foundations

We now present the core definitions, assumptions, and results that underlie our analysis. These form
the theoretical basis for the bound improvements and constructions developed in the remainder of
the paper.

Lemma 1 (Minimal Strategy Lemma). The set of all outputs must be the same as the set of all
inputs for a winning strategy on a minimum number of vertices. In other words, R([N ]) = [N ].

Proof. We proceed with proof by contradiction. For the sake of contradiction, assume that there is
one x that is not in the set of outputs for a winning strategy S. We can then remove this x from the
vertices. We can verify that the strategy S is still a winning strategy for the new set of vertices.
But the number of vertices has been reduced by 1, contradicting N is the minimum. So such a x
does not exist.

Lemma 1 tells us that we can check if N is not the minimum for a given winning strategy by
computing the set of all outputs. We simply have to check to see if there are any x that do not
exist in the output set.
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Corollary 1. B0(p, k, 1) = qr is not the lower bound for the novelty game.

Proof. Based on Lemma 1, we just need to show that there exists at least one x that is not a valid
output. We proceed with proof by contradiction. If d is the last digit of the last input, then since
the strategy requires the last digit of the output be different from d, we know that x = ...dd is not a
valid output.

Lemma 1 tells us it is possible to reduce the existing oblivious bound. One way is to remove
all the inputs that are never outputs of the winning strategy, leaving only all the valid outputs.
This would reduce the total number of vertices while still maintaining a winning strategy. Lemma 2
provides a specific construction method to accomplish this.

Lemma 2 (Range Reduction Lemma). Let X = [N ] have a winning strategy S whose range is
Y = {y1, . . . , yM} with M < N . Define X2 = [M ]. Then there is a bijection

f : Y → X2, f(yi) = i,

and a corresponding winning strategy S2 on X2.

Proof. Define f(yi) = i for 1 ≤ i ≤ M . The new domain X2, with fewer elements, will have a
winning strategy S2 constructed from S. Given any k inputs from X2 = {1, . . . ,M}, apply f−1 to
obtain their preimages in Y . Use the original strategy S on these values to produce a novel output
y ∈ Y . Then let S2 output f(y) ∈ X2. Since f is bijective, f(y) differs from all original inputs in
X2, so S2 is also a winning strategy.

Lemma 2 provides a systematic way to construct a winning strategy by reducing the number of
possible outputs. If the outputs occupy only M < N values, we can remap the strategy from [N ] to
[M ], preserving correctness and reducing the bound accordingly. Though this kind of normalization
via bijections appears implicitly in many combinatorial and game-theoretic arguments, we state it
here explicitly for clarity and later reference.

By Lemma 1 and Lemma 2, if we reduce the number of valid outputs for a winning strategy, then
the bound B(p, k, 1) will be reduced. This serves as the theoretical foundation of our framework to
improve the bound of novelty games.

Next we will describe our new optimizations for the winning strategy to reduce the oblivious
bound.

5 Optimization 1: Input Avoidance

This optimization forms the conceptual foundation for those that follow.

5.1 Input Avoidance in the (3, 2, 1) Game

We begin by considering the worst case presented in [LS24], which is when the input digits are all
distinct. In other words, when each digit from 0 to 13 appears exactly once across the two inputs.
Note that in this case, the last digit of the output does not have to be a brand new digit. Instead,
we can simply reuse one of the existing digits from the two inputs. This allows us to go from needing
15 digits to needing 14 digits. We can further optimize this, bringing it down to needing 13 digits
by allowing a digit of overlap between the two inputs.

Let’s modify the existing algorithm presented in [LS24] to show that these reductions are valid.
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However, instead of simply letting v be a digit distinct from all xi and yi as in [LS24], we do
some casework. Let d be the number of unique digits present in the two inputs. We define v as
follows:

v =

{
one of the unused digits if d < 13

x1 if x1 ̸∈ {A(x) ∪A(y)} else y1 if d = 13

We now present several examples in Figure 12 to illustrate the new rule. We will use hexadecimal
digits A,B,C,D,E, F to stand for digits 10, 11, 12, 13, 14, 15 respectively.

• Example 1: Inputs are x = 0123456 and y = CBA9999, and the output is z = 4599697.
Because the number of unique digits in the two inputs is 11 < 13, the output z selects 7 as
its last digit, making it a distinct number from all its ancestors. This is actually the same
processing as the original algorithm.

• Example 2: Inputs are x = 0123456 and y = CBA9876, and the output is z = 4587666. The
number of unique digits in the two inputs is 13, and the output z reuses the same last digit as
the two inputs, but it is still a distinct number from all its ancestors.

• Example 3: Inputs are x = 0123453 and y = CBA9876, and the output is z = 4587366. The
number of unique digits in the two inputs is 13, and the output reuses the same last digit as
the second input y, but it is still a distinct number from all its ancestors.

To show this works for all inputs, we consider two cases.

1. If d < 13, then we can simply set v to be different from all xi and yi, similar to [LS24].

2. If d = 13, we can show that the ancestor digits of the output must be different from the
ancestor digits of the two inputs. Begin by noting that we know there is exactly one duplicate
digit among the 14 digits of the two inputs. WLOG, assume x1 is chosen as the last digit of
the output. This means the output number is

z = z7z6z5z4z3z2z1 = x3x2y3y2x1y1x1.

We can further split this into two cases:

(a) If x1 = y1, then we know all the other digits in the inputs are different from each other.
Thus, the first 4 digits of z will be different from those of x or y due to our construction
(e.g. z7 = x3 ̸= x7). This makes z different from its parents, which avoids 1-cycles. We
also find that z will be different from its grandparents and great-grandparents, thus
avoiding 2-cycles and 3-cycles. This is because the last digit of the output z1 = x1
will be different from A(z), which represents the last digits of z’s grandparents and
great-grandparents.

(b) If x1 ̸= y1, then we can focus on when one of x1, y1 is the duplicate digit. The case when
the duplicate is between two ancestor digits is trivial, as we can simply set v to x1 and
it will be different from all the digits in the inputs. Now, to stay consistent with our
assumption above, let y1 be the duplicate digit so we can let v = x1. We have z ≠ x
as we know A2(z) ̸= A2(x). Furthermore, since x1 is different from all the other input
digits, we know that z is different from any of its 14 ancestors.

With this optimization, we bring the upper bound on B(3, 2, 1) from 157 to 137, which is a
reduction of more than 60%.
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5.2 The (p, k, 1) Game

The same logic can be extended to general k values. In general, we reduce the base from q to q − k
according to the below algorithm.

1. If the total number of unique digits across all k input numbers is less than q− k, then there is
always at least one digit unused among them. We can safely choose such a digit as the final
digit v of the output number, ensuring its novelty.

2. If the number of unique digits among all k input numbers is exactly q − k, then there are
precisely k repeated digits among the q − 1 ancestor digits. We consider two subcases:

(a) If all k input numbers share the same last digit, say m(xi) = a for all 1 ≤ i ≤ k, then
a must not appear among the other ancestor digits. In this case, we simply set v = a.
Similarly to the (3, 2, 1) case, it is clear that z ̸= m(xi) for all 1 ≤ i ≤ k.

(b) The other case is when some of the last digits of the k inputs are not equal. This allows
us to choose a last digit v from among them such that v does not appear among the
other ancestor digits.

Each input has

r =
kp − 1

k − 1
=

q − 1

k

digits, so the k inputs contain a total of q − 1 digits.

Furthermore, we know the number of unique digits across all inputs is d = q − k. Since
q − 1 > q − k, by the pigeonhole principle, there is at least one last digit that is not a
duplicate of any of the ancestor digits. We can then pick this v as the last digit of the
output.

However, we still have the case where m(z) = m(xi) for some input xi. We simply have
to show that A(z) ̸= A(xi) to complete the proof. Note that all ancestors with last digit
m(z) are among the k inputs which are fully known by the player. As r = kp−1

k−1 is much
larger than k, we can easily find such an ancestor digit that makes this inequality true.
Thus, we have that z is different from any of its q − 1 ancestors by the same logic as in
the (3, 2, 1) case.

5.3 Summary of Results

The key idea is that when a player produces a new output, we already know the inputs used to
make that output. This redundancy exists because the current player already knows the k input
numbers they are using to make the output. Thus, even if the player chooses the same last digit in
the output as one of the input numbers, we can still guarantee that the output number is different
from all of the input numbers. We can further guarantee that the output will be different from
the other q − 1− k higher-level ancestors, as we ensure the output’s last digit is distinct from the
ancestor digits.

Thus, this optimization reduces the digit range from q to q − k in general. Our oblivious bound
formula with Optimization 1 is thus:

B1(p, k, 1) = (q − k)r.

Pseudocode for this algorithm can be found as Algorithm 5 in Appendix A. The below table is
a comparison of the original bound and the reduced bound for small values of p and k.
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Table 2: Comparison between B0(p, k, 1) and B1(p, k, 1)

old, new k = 2 k = 3 k = 4 k = 5

p = 2 343, 125 28561, 10000 4084101, 1419857 88E7, 30E7
p = 3 17E7, 62E6 67E19, 24E19 32E39, 11E39 97E66, 35E66
p = 4 23E21, 86E20 20E82, 75E81 19E214, 70E213 17E450, 65E449
p = 5 60E54, 22E54 78E308, 28E308 12E1068, 44E1067 13E2804, 51E2803
p = 6 34E131, 12E131 11E1105, 41E1104 23E5100, 87E5099 37E16758, 13E16758
p = 7 42E304, 15E304 70E3841, 26E3841 15E23696, 58E23695 64E97452, 23E97452

This optimization motivates further optimizations, as we realize that the digit range q can be
further reduced. Next, we present Optimization 2, which brings down the digit range even more by
aggressively avoiding cycles.

6 Optimization 2: Cycle Avoidance

As shown in [LS24], if a strategy can avoid cycles of length 1 to p, then it is a winning strategy
for the (p, k, 1) game. We focus on avoiding cycles across all ancestors, instead of just avoiding the
immediate ancestors (inputs).

6.1 The (3, 2, 1) Game

Through careful construction and some casework, we will reduce the digit range from q − k = 13 to
D(3, 2) = 11. To initially describe our strategy, we will focus on x without loss of generality. Any
arguments made regarding x and z can easily be applied to y and z.

To guarantee novelty, we want to avoid all L-cycles. In the (3, 2, 1) game, we have 1 ≤ L ≤ 3.
We proceed with casework:

1. To avoid 3-cycles, we claim that having mz /∈ Gx is sufficient. Due to our construction,
Algorithm 1, any grandchild b of z must satisfy mz ∈ Gb. If we have mz /∈ Gx, then it follows
that Gb ̸⊆ Gx. In particular, this implies Gb ̸= Gx, so b ̸= x, and we cannot have a 3-cycle.

2. To avoid 1-cycles, note that the condition mz /∈ Gx is sufficient. To prove this, assume for
the sake of contradiction that a 1-cycle occurs while mz /∈ Gx. This means we need to have
z = x, which implies that Pz = Px, Gz = Gx, and mz = mx. However, since mx ∈ Px ⊆ Gx,
we would have

mz = mx ∈ Gx,

which violates our assumption. Thus, no 1-cycle can occur when we have mz /∈ Gx.

3. To avoid 2-cycles, let’s first consider what is necessary to have a 2-cycle. By definition
(Algorithm 1), we would need Pz ≻ Ga and mz ≻ Pa where a is z’s child. Since a 2-cycle
means Ga = Gx and Pa = Px, we would also need

Pz ≻ Gx and mz ≻ Px.

Now, let’s consider two subcases:
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(a) Pz ̸≻ Gx. By the above, we would not have a 2-cycle.

(b) Pz ≻ Gx. This means it is possible to have Ga = Gx, and thus we must enforce mz ̸≻ Px

(i.e. mz /∈ Px) to avoid 2-cycles.

This completes our proof. To summarize, our requirements for the strategy are the following:{
m(z) /∈ G(x)

m(z) /∈ P (x) if P (z) ≻ G(x)
(2)

We now present several examples in Figure 13 to illustrate the new rule. We will use hexadecimal
digits A to stand for the digit 10.

• Example 1: Inputs are x = 0123456 and y = A987654, and the output is z = 4565644. Because
A1(z) = 64 cannot convert to A2(x) = 0123 or A2(y) = A987, the last digit m(z) does not
need to exclude any digits in A1(x) or A1(y). So m(z) just needs to exclude the 8 digits in
A2(x) and A2(y) by taking the smallest value 4. The output reuses the same last digit as
the second input (which is just a coincidence), and it is still a distinct number from all its
ancestors.

• Example 2: Inputs are x = 0123452 and y = A987653, and the output is z = 4565236. Because
A1(z) = 23 can convert to A2(x) = 0123, the last digit m(z) needs to exclude the digits in
A1(x) = 45. So m(z) needs to exclude the 8 digits in A2(x) and A2(y) and the 2 digits in
A1(x) = 45 by taking the smallest value 6. The output is still a distinct number from all its
ancestors.

Using this new rule (2), we can now calculate the minimum needed range for each digit. In any
case, we would have m(z) /∈ G(x) and m(z) /∈ G(y), which gives most |G(x)|+ |G(y)| = 8 restricted
digits. Additionally, we focus on the worst case, which is when P (z) ≻ G(x) and P (z) ≻ G(y)
(Case 3b). In this case, we need mz /∈ Px and mz /∈ Py, giving |Px|+ |Py| = 4 more restricted digits.
However, we also need to consider duplicate digits. Notice that since P (z) ≻ G(x) and P (z) ≻ G(y),
P (z) is present in both G(x) and G(y), leading to an overlap of |P (z)| = 2 digits. Thus, we end up
requiring

8 + 4− 2 + 1 = 11 distinct digits.

We made some assumptions about what the ”worst case” is, but it’s fairly straightforward to
check the other cases and notice that we never require more than 11 distinct digits.

We’ve shown above that with our new construction method (Algorithm 7), we always have
at most 11 distinct digits in the inputs. Thus, a range of [0, 11) for each digit is sufficient. This
means we can reduce the original bound B0(3, 2, 1) = 157 = 170, 859, 375 to our new bound
B2(3, 2, 1) = 117 = 19, 487, 171, which is a 88.6% reduction.

6.2 Theoretical Guarantees

We will first provide the theoretical foundations needed for this optimization, and then we will
derive cycle avoidance rules to reduce the bound. We begin by presenting a crucial property. For
Figure 2 below, the input is x, the output is z, a is a child of z, and b is a grandchild of z (and a
child of a). The arrow between two boxes stands for ancestor group convertibility.

Property 1 (Chain-Shifting Property). Recall that due to the way we do ancestor-bookkeeping
(Algorithm 1), we have that Ai(x) ≻ Ai+1(z).
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Figure 2: The ancestor group chain-shifting property

x

z

a

b

A4 A3 A2 A1 A0

A4 A3 A2 A1 A0

A4 A3 A2 A1 A0

A4 A3 A2 A1 A0

To visualize this key property, we can think of each number as a chain of ancestor groups:
Ap−1Ap−2...A2A1A0. These chains are laid horizontally, with an input directly above its output, as
in Figure 2. As we go from one ancestor chain to the next, each ancestor group ”shifts” one to the
left. In other words, we have A0(x) ≻ A1(z), A1(x) ≻ A2(z), and so on. The leftmost ancestor group
Ap−1 is thus ”lost,” as we do not need to store information about whether there are (p+ 1)-cycles.

Property 2. The chain-shifting property is also true for x and its descendant u after L levels: if
i− j = L, then we must have Aj(x) ≻ Ai(u).

As our goal is to avoid cycles, we proceed by considering when a cycle can exist.

Lemma 3. In order for an L-cycle to exist between an input x and an output z, we must have
Aj(z) ≻ Ai(x) for all i− j = L− 1.

Proof. In order for an L-cycle to exist, the output L levels down from x, which is L− 1 levels down
from z, must be the same as x. Thus, applying Property 2 for all corresponding ancestor groups in
z and x gives us Lemma 3.

The below Figure 3 shows such an example for 3-cycle x-z-a-x existence with the 5-player novelty
game. We can easily see that for 3-cycle to exist, we must have A2(z) ≻ A4(x), A1(z) ≻ A3(x), and
A0(z) ≻ A2(x).

Now, we present a useful property between cycles of different lengths.

Theorem 2. If a strategy avoids every L-cycle, then it also avoids every M -cycle where M | L.

Proof. Assume for the sake of contradiction that our strategy avoids all L-cycles, but there still
exists an M -cycle. This means there is a number x that returns to itself after M levels. However, we
know L = M ×N for some integer N , so we can simply repeat this M -cycle N times to produces an
L-cycle. This contradicts our assumption that no L-cycles exist, and so no M -cycles can exist.

Theorem 3. If a strategy avoids all cycles of lengths ⌊p2⌋+1, ⌊p2⌋+2, . . . , p, then it also avoids all
cycles of lengths 1, 2, . . . , p.

Proof. For any integerM with 1 ≤M ≤ ⌊p2⌋, it’s apparent that there exists some L with ⌈p2⌉ ≤ L ≤ p
such that M | L. The result follows by a simple application of Theorem 2.
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Figure 3: The necessary condition for 3-cycle existence with 5 players

x

z

a

x

A4 A3 A2 A1 A0

A4 A3 A2 A1 A0

A4 A3 A2 A1 A0

A4 A3 A2 A1 A0

We can naturally expand the strategy we used in the (3, 2, 1) game to the (p, k, 1) game. Based
on Theorem 2 and Theorem 3, our general strategy is as follows:{

m(z) /∈ Ap−1(x)

m(z) /∈ AL(x),where ⌊p2⌋ < L < q − 1 if ∀j > 0, Aj(z) ≻ Aj+L−1(x)
(3)

6.3 A Detailed Example for Necessary Conditions of L-cycle Existence

For the (7, 2, 1) game, the below Figure 4 – 7 illustrate the necessary conditions for L-cycle existence
(4 ≤ L ≤ 7). Note based on Theorem 3, we just need to avoid cycles of 4 ≤ L ≤ 7, then we also
avoid all cycles of 1 ≤ L ≤ 7. The arrow between two boxes stands for ancestor group convertibility
relation. These figures help us understand in the next subsection the calculation of the contribution
of forbidden digits from cycle avoidance rules.

Figure 4: Necessary condition for 7-cycle existence

input x

output z

A6 A5 A4 A3 A2 A1 A0

A6 A5 A4 A3 A2 A1 A0

Figure 5: Necessary condition for 6-cycle existence

input x

output z

A6 A5 A4 A3 A2 A1 A0

A6 A5 A4 A3 A2 A1 A0

More specifically, because 7-cycle avoidance means 1-cycle avoidance, 6-cycle avoidance means
both 3-cycle avoidance and 2-cycle avoidance, if we can break the necessary conditions for these
cycles, then we will have L-cycle avoidance for all 1 ≤ L ≤ 7.
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Figure 6: Necessary condition for 5-cycle existence

input x

output z

A6 A5 A4 A3 A2 A1 A0

A6 A5 A4 A3 A2 A1 A0

Figure 7: Necessary condition for 4-cycle existence

input x

output z

A6 A5 A4 A3 A2 A1 A0

A6 A5 A4 A3 A2 A1 A0

6.4 Digit Range Contributions

Recall that we use C(L) to denote the forbidden-digit contribution from L-cycle avoidance. The
below is the basic formula to calculate the required digit range from the contributions of all L-cycle
avoidance

D(p, k) =

p∑
L=1

C(L) + 1. (4)

Based on the theoretical guarantees from Subsection 6.2, we will analyze which values of mz

must be excluded to avoid cycles of various lengths. Each expression below gives the worst-case
number of digits that must be excluded to eliminate L-cycles or (p− j)-cycles, taking into account
overlaps among the inputs. Recall that we denote the output as z and the inputs as x1, x2, . . . xk.
We proceed with casework based off the above rule (3).

1. To avoid p-cycles, we must ensure mz does not appear in the Ap−1 group of any input (see
Figure 4. Since there are at most kp ancestors in Ap−1, the total number of digits we exclude
is

C(p) = k · kp−1 = kp.

2. To avoid (p− 1)-cycles (see Figure 5), we do not need to exclude mz from all Ap−2 groups,
which would require kp−1 digits. This naive way of contribution can be improved. If A1(z) is
not a subset of any Ap−1(x), then mz faces no restriction. If A1(z) is a subset of exactly one
input’s Ap−1 group, and that input’s Ap−2 contains kp−2 distinct digits, then the contribution
is kp−2. When A1(z) is a subset of a second input’s Ap−1 group, this input must have at least
k duplicates of A1(z), so its Ap−2 group contributes only kp−2 − k new digits. Continuing this
process for the remaining k − 2 inputs, the total becomes

C(p− 1) = kp−2 + (k − 1)(kp−2 − k) = kp−1 − k2 + k.

In general, let us use F to denote the contribution of the first matched input, and use S to
denote the contribution of the second matched input, then the formula for C(L) is

C(L) = F + (k − 1)S.
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3. To avoid (p − 2)-cycles (see Figure 6), fully excluding mz from all Ap−3 groups would cost
kp−2 digits, but this can be reduced. If one input matches, it contributes kp−3 − k since
A1(z) ≻ Ap−2 has been counted for (p− 1)-cycles and A1(z) is not new here: note in the worst
case the previous (p − 1)-cycle avoidance must have contributed because the (p − 1)-cycle
contribution is roughly k times of the (p− 2)-cycle contribution. Each additional input adds
kp−3 − k2 − k more digits, because its Ap−3 group contains at least k2 + k repeated elements
due to overlap at levels A1 and A2. The total is therefore

C(p− 2) = kp−3 − k + (k − 1)(kp−3 − k2 − k) = kp−2 − k3.

4. To avoid (p− 3)-cycles (see Figure 7), the first matched input contributes kp−4 − k2 − k digits
(because A2(z) and A1(z) are not new). Each additional match adds kp−4− k3− k2− k digits,
reflecting the necessary overlap of k3 + k2 + k values. This gives a total of

C(p− 3) = kp−4 − k2 − k + (k − 1)(kp−4 − k3 − k2 − k) = kp−3 − k4 − k2.

5. In the general case of avoiding (p− j)-cycles, each additional matched input adds

kp−j−1 − (kj + kj−1 + · · ·+ k2 + k)

more forbidden digits for mz. Thus, the total contribution is:

C(p− j) = (kp−j−1 −
j−1∑
i=1

ki) + (k − 1)

(
kp−j−1 −

j∑
i=1

ki

)
= kj + k

(
kp−j−1 −

j∑
i=1

ki

)

= kp−j − kj+1 + k −
j−1∑
i=1

ki = kp−j + kj + k −
j+1∑
i=1

ki

= kp−j − kj+1 + k − kf(k, j − 1) = kp−j + kj + k − kf(k, j + 1).

That is, the general formula is

C(p− j) = kp−i − k(ki − 1)− kf(k, i− 1) = kp−j + kj + k − kf(k, j + 1). (5)

This summation stops when kp−j−1 −
∑j

i=1 k
i becomes negative. At that point, additional

matched inputs do not contribute any new forbidden digits. This occurs when 2j ≥ p− 1, or
equivalently, when j ≥ p−1

2 . In such cases, the contribution is just from the first input, thus it

simplifies to kp−j−1 −
∑j−1

i=1 k
i = kp−j−1 − k(kj−1−1)

k−1 = kp−j−1 − kf(k, j − 1).

Remark 2. It is obvious that C(L) ≤ kL. This is because the maximum possible number of unique
digits for L-cycle avoidance is

k∑
i=1

|AL−1| ≤ k · kL−1 = kL.

Remark 3. It can be observed or easily verified that we have the property C(j) >
∑j−1

i=1 C(j). This

is because we have the property |Aj | >
∑j−1

i=0 |Ai| and C(j) is proportional to |Aj |.

Let s = ⌈p2⌉ − 1, the minimum cycle to avoid is when j = s, that is, the minimum cycle to avoid
is p− s. Now let us calculate the contribution of this (p− s)-cycle avoidance, which is the edge case
that we must consider.
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1. If p is even, the contribution of each additional matched input kp−s−1 −
∑s

i=1 k
i > 0. So this

p− s cycle has total contribution of C(p− s) = kp−s + ks + k − kf(k, s+ 1). This is actually
the same form as the standard C(p− j) formula.

2. However, if p is odd, then the contribution of each additional matched input kp−s−1−
∑s

i=1 k
i <

0. So this p − s cycle has contribution of C(p − s) = kp−s−1 − kf(k, s − 1) instead of
kp−s − ks+1 + k − kf(k, s− 1), because only the contribution of the first input counts. There
is a difference of kp−s − ks+1 + k − kp−s−1 to subtract:

term to subtract = kp−s − ks+1 + k − kp−s−1

Notice that when p is odd, actually p− s = s+ 1, so it becomes:

term to add = kp−s−1 − k

Let us use E to stand for this extra term to add, we have:

E =

{
kp−s−1 − k, where s = ⌈p2⌉ − 1 if p is odd

0 otherwise.
(6)

Then we can have a unified formula for this edge case

C(p− s) = kp−s + ks + k − kf(k, s+ 1) + E.

6.5 Digit Range Reduction

Note that it is only necessary to sum across half the cycles due to Theorem 3. Thus, our general
formula is:

D(p, k) =

⌈ p
2
⌉−1∑

i=0

C(p− i) + 1. (7)

Remark 4. Let s = ⌈p2⌉ − 1. It can be easily verified that D(p, k) ≤
∑s

i=0 k
p−i = kp−sf(k, s+ 1),

from the above Equation 7 and Remark 2.

Substitute C(p− i) with the expression in Equation 5, we get

D(p, k) = kp +

⌈ p
2
⌉−1∑

i=1

(kp−i − k(ki − 1)− kf(k, i− 1)) + E + 1. (8)

Let s = ⌈p2⌉ − 1 and using the fact that
∑s

i=0 k
i = f(k, s+ 1), we can simplify the formula:

D(p, k) = kp +
s∑

i=1

(kp−i − k(ki − 1)− kf(k, i− 1)) + E + 1

= kp +
s∑

i=1

(kp−i − ki+1)−
k(k

s−1
k−1 − s)

k − 1
+ sk + E + 1 (9)
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=

s∑
i=0

kp−i −
s∑

i=1

ki+1 − k(f(k, s)− s)

k − 1
+ sk + E + 1

= kp−sf(k, s+ 1)− k2f(k, s)− k(f(k, s)− s)

k − 1
+ sk + E + 1.

Thus, our final digit range formula is:

D(p, k) = kp−sf(k, s+ 1)− k2f(k, s)− kf(k, s)

k − 1
+

sk2

k − 1
+ E + 1, where s = ⌈p

2
⌉ − 1. (10)

To calculate the difference between D(p, k) and the original power base f(k, p+ 1) =
∑p

i=0 k
i,

we use Equation 9:

∆D = f(k, p+ 1)−D(p, k) =

p∑
i=0

ki − (kp +

s∑
i=1

(kp−i − ki+1)−
k(k

s−1
k−1 − s)

k − 1
+ sk + E + 1)

= 2
s∑

i=1

ki+1 − sk +
k(k

s−1
k−1 − s)

k − 1
− E = 2 · f(k, s+ 2)− (s+ 2)k − 2 +

k(k
s−1
k−1 − s)

k − 1
− E

Thus, we have that

ratio(∆D) =
f(k, p+ 1)−D(p, k)

f(k, p+ 1)
=

2 · f(k, s+ 2)− (s+ 2)k − 2 +
k( k

s−1
k−1

−s)

k−1 − E

f(k, p+ 1)

≈ 2f(k, s+ 2)

f(k, p+ 1)
≈ 2

kp−s−1
≈ 2

k
p
2

.

Remark 5. We can do the ratio estimation in another way. From Remark 4, we get ∆D ≥∑s
i=1 k

p−s−1 = kf(k, p− s− 1). Therefore, ratio(∆D) ≈ kf(k,p−s−1)
f(k,p+1) ≈ 1

ks+1 ≈ 1

k
p
2
. There is only a

difference of the factor of 2 from the above estimation.

6.6 Bound Reduction

We obtain the final bound formula for Optimization 2 by substituting D(p, k) for q in the original
bound formula B0(p, k, 1) ≤ qr. In other words, we have

B2(p, k, 1) ≤ D(p, k)f(k,p).

More specifically, we have the following for some common player counts:

• 3 players: B(3, k, 1) = (k3 + k + 1)k
2+k+1.

• 4 players: B(4, k, 1) = (k4 + k3 − k2 + k + 1)k
3+k2+k+1.

• 5 players: B(5, k, 1) = (k5 + k4 + k + 1)k
4+k3+k2+k+1.
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We now finish by estimating the ratio between the new bound and the original bound, using
(1− 1

x)
x ≈ 1

e to finish:

B2(p, k, 1)

B0(p, k, 1)
=

(
D(p, k)

f(k, p+ 1)

)f(k,p)

= (1− ratio(∆D))f(k,p)

≈
(
1− 2

k
p
2

)kp

=

(
(1− 2

k
p
2

)
k
p
2
2

)2k
p
2

≈ 1

e2k
p
2
.

The ratio between the new bound B2(p, k, 1) with Optimization 2 and the original bound
B0(p, k, 1) is:

B2(p, k, 1) ≈
B0(p, k, 1)

e2k
p
2

(11)

Note that this reduction becomes more significant as p and k get larger.
For small values of p and k, Table 3 shows the digit range reduction between Optimization 2

and the original, while Table 4 compares the original bound and the reduced bound.

Table 3: The digit range reduction between Optimization 2 and without optimization

new, old k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

p = 2 5, 7 10, 13 17, 21 26, 31 37, 43 50, 57
p = 3 11, 15 31, 40 69, 85 131, 156 223, 259 351, 400
p = 4 23, 31 103, 121 309, 341 731, 781 1483, 1555 2703, 2801
p = 5 49, 63 325, 364 1281, 1365 3751, 3906 9073, 9331 19209, 19608
p = 6 103, 127 1021, 1093 5301, 5461 19231, 19531 55483, 55987 136473, 137257
p = 7 217, 255 3142, 3280 21473, 21845 96826, 97656 334297, 335923 957902, 960800

Table 4: Comparison between B1(p, k, 1) and B2(p, k, 1)

old, new k = 2 k = 3 k = 4 k = 5

p = 2 125, 125 10000, 10000 1419857, 1419857 30E7, 30E7
p = 3 62E6, 19E6 24E19, 24E18 11E39, 41E37 35E66, 43E64
p = 4 86E20, 26E19 75E81, 32E79 70E213, 44E210 65E449, 59E445
p = 5 22E54, 24E51 28E308, 28E302 44E1067, 55E1057 51E2803, 11E2789
p = 6 12E131, 21E126 41E1104, 56E1094 87E5099, 15E5083 13E16758, 56E16732
p = 7 15E304, 17E296 26E3841, 12E3820 58E23695, 30E23651 23E97452, 91E97372

6.7 Optimization 2 Algorithm

Recall Property 1 and Property 2. In our algorithm, we divide Ai(x) (where 1 ≤ i ≤ p− 1) into
multiple equal-length subarrays s of length |Aj(z)|. We have Aj(z) ≻ Ai(x) if

Aj(z) = s for at least one such s. (12)
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The ancestor-bookkeeping algorithm is not changed with this optimization. With this in mind,
pseudocode for the Optimization 2 algorithm is provided in Algorithm 6 and Algorithm 7, located
in Appendix A.

7 Optimization 3: Reordering Ancestors

While Optimization 2 lowers the power base, further reductions are achieved by eliminating
redundancy in ancestor digits.

7.1 The (3, 2, 1) Game

Note that 4321254 is essentially equivalent to 1234254 or 1234524 when serving as input to next
player. In other words, the order of digits within an ancestor level do not matter. Thus, we can
simply sort them in a fixed order (e.g. non-decreasing). This allows us to merge a lot of equivalent
output numbers into a single number, which reduces the bound due to Lemma 2. By doing this, we
reduce B2(3, 2, 1) to B3(3, 2, 1) = 726, 726.

We now present several examples in Figure 14 to illustrate the new rule. Note that we are in
base-11 and use the digit A to represent the value 10.

• Example 1: Inputs are x = 0123456 and y = 789A564, and the output is z = 4556464. The
digits at each ancestor level of z must appear in a fixed, sorted order.

• Example 2: Inputs are x = 0123554 and y = 789A466, and the output is again z = 4556464.

Remark 6. Example 1 and Example 2 produce the same output due to the reordering of ancestor
digits.

• Example 3: Inputs are x = 0123453 and y = 789A563, and the output is z = 4556334. Since
A1(z) = 33 cannot convert to either A2(x) = 0123 or A2(y) = 789A, the last digit m(z) does
not need to exclude any digits from A1(x) or A1(y). It only needs to avoid the 8 digits in
A2(x) and A2(y), so it takes the smallest possible value 4. The output is distinct from all its
ancestors.

• Example 4: Inputs are x = 0123453 and y = 789A562, and the output is z = 4556236. Here
A1(z) = 23 can convert to A2(x) = 0123, so m(z) must also exclude the digits in A1(x) = 45.
It avoids the 8 digits in A2(x) and A2(y) plus 2 digits in A1(x), taking the smallest valid value
6. The output remains distinct from all its ancestors.

7.2 Bound Reduction

We will now calculate B3(3, 2, 1). For each ancestor level i, we are forming sorted arrays of length
ki using digits from a fixed pool of size D(p, k). Repetition is allowed and the order of digits does
not matter (since each ancestor level is sorted), so this is a classic stars and bars problem (https:
//en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)). We are choosing ki elements
from D(p, k) digits with repetition allowed and order irrelevant. The number of such combinations
at each ancestor level is given by the standard formula:(

D(p, k) + ki − 1

ki

)
.
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For the (3, 2, 1) game, we have

B3(3, 2, 1) ≤
(
11 + 4− 1

4

)
·
(
11 + 2− 1

2

)
· 11 = 726726.

In general, we have

B3(p, k, 1) ≤
p−1∏
i=0

(
D(p, k) + ki − 1

ki

)
.

For small values of p and k, Table 5 shows a comparison between B2(p, k, 1) and B3(p, k, 1).

Table 5: Comparison between B2(p, k, 1) and B3(p, k, 1)

old, new k = 2 k = 3 k = 4 k = 5

p = 2 125, 75 10000, 2200 1419857, 82365 30E7, 3705156
p = 3 19E6, 726726 24E18, 35E12 41E37, 45E23 43E64, 21E38
p = 4 26E19, 55E13 32E79, 46E46 44E210, 47E109 59E445, 59E213
p = 5 24E51, 11E33 28E302, 74E151 55E1057, 15E458 11E2789, 13E1097
p = 6 21E126, 62E73 56E1094, 87E476 15E5083, 77E1875 56E16732, 17E5561
p = 7 17E296, 10E157 12E3820, 53E1455 30E23651, 41E7552 91E97372, 24E27890

7.3 The General Algorithm

As our ancestor-bookkeeping algorithm changes with this optimization, we need to update the check
criteria of ancestor group convertibility. If Aj(z) ≻ Ai(x), then we need Aj(z) ⊆ Ai(x), as before.
Additionally, the number of occurrences of each digit in Aj(z) must be equal to or less than the
number of occurrences of the same digit in Ai(x). In other words, if Aj(z) ≻ Ai(x), then

Aj(z) ⊆ Ai(x) and ∀d, #d(Aj(z)) ≤ #d(Ai(x)), (13)

where #d(S) denotes the number of occurrences of digit d in sequence S. When calling the last digit
selection Algorithm 6 of Optimization 2 for this optimization, we will use this updated definition of
Aj(z) ≻ Ai(x). When doing ancestor-bookkeeping, we replace each ancestor group Aj(z) with its
sorted sequence. Pseudocode for the Optimization 3 algorithm is provided in Algorithm 8 located
in Appendix A.

8 Optimization 4: Merging Equivalent Ancestors

This optimization further reduces the bound by merging equivalent ancestors in the outputs.

8.1 The (3, 2, 1) Game

Note that 1112345 is essentially equivalent to 1222345, since their grandparents have the same set of
distinct digits, namely {1, 2}. Thus, instead of simply sorting each ancestor level, we can represent
each ancestor level as a set of digits. Again, this allows us to merge a lot of equivalent output
numbers into a single number, which reduces the bound due to Lemma 2. By doing this, we reduce
B3(3, 2, 1) to B4(3, 2, 1) = 407, 286.
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We now present several examples in Figure 15 to illustrate the new rule. Note that we are in
base-11 and use the digit A to represent the value 10.

• Example 1: Inputs are x = 0123456 and y = 789A564, and the output is z = 4456464. The
digits at each ancestor level of the output z must merge to its equivalent ancestor group, so
the previous 4556464 number from Optimization 3 is never an output now.

• Example 2: Inputs are x = 0123564 and y = 789A466, and the output is z = 4456464. This
Example 2 outputs the same number z as Example 1, due to the reordering of the ancestor
digits and merging of equivalent ancestor groups.

• Example 3: Inputs are x = 0123453 and y = 789A563, and the output is z = 4456334. Because
A1(z) = 33 cannot convert to either A2(x) = 0123 or A2(y) = 789A, the last digit m(z) does
not need to exclude any digits in A1(x) or A1(y). So m(z) just needs to exclude the 8 digits
in A2(x) and A2(y) by taking the smallest value 4. The output is a distinct number from all
its ancestors.

• Example 4: Inputs are x = 0123453 and y = 789A562, and the output is z = 4456236. Because
A1(z) = 23 can convert to A2(x) = 0123, the last digit m(z) needs to exclude the digits in
A1(x) = 45. So m(z) needs to exclude the 8 digits in A2(x) and A2(y) and the 2 digits in
A1(x) = 45 by taking the smallest value 6. The output is still a distinct number from all its
ancestors.

8.2 Bound Reduction

We will now calculate B4(3, 2, 1). Note that each ancestor level, the number of unique digit sets of
size 1 through n is given by

n∑
i=1

(
D(p, k)

i

)
.

Thus, for (3, 2, 1), we get

B4(3, 2, 1) ≤
[(

11

1

)
+

(
11

2

)
+

(
11

3

)
+

(
11

4

)]
·
[(

11

1

)
+

(
11

2

)]
· 11 = 407286.

In general, we have

B4(p, k, 1) ≤
p−1∏
i=0

ki∑
j=1

(
D(p, k)

j

)
.

For small values of p and k, Table 6 shows a comparison between B3(p, k, 1) and B4(p, k, 1).
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Table 6: Comparison between B3(p, k, 1) and B4(p, k, 1)

old, new k = 2 k = 3 k = 4 k = 5

p = 2 75, 75 2200, 1750 82365, 54621 3705156, 2175706
p = 3 726726, 407286 35E12, 48E11 45E23, 17E22 21E38, 25E36
p = 4 55E13, 60E12 46E46, 38E43 47E109, 59E103 59E213, 18E204
p = 5 11E33, 46E30 74E151, 16E142 15E458, 28E434 13E1097, 68E1049
p = 6 62E73, 52E68 87E476, 79E448 77E1875, 11E1784 17E5561, 64E5330
p = 7 10E157, 47E146 53E1455, 33E1372 41E7552, 16E7188 24E27890, 12E26744

8.3 The General Algorithm

As with the previous optimization, we update the convertibility criteria for Aj(z) ≻ Ai(x). In this
case, we require

Aj(z) ⊆ Ai(x) and |Ai(x)| − |Aj(z)| ≤ ki − kj . (14)

This reflects the merging of sorted digits into sets of unique digits. When calling Algorithm 6,
we apply this modified ancestor group convertibility check.

For ancestor-bookkeeping, the merging of equivalent ancestors is done by:

1. Getting the set of unique digits U in an ancestor group Ai(z)

2. Sorting U

3. Getting the minimal digit dmin from U

4. Adding the necessary number (ki − len(U)) of occurrences of dmin before U to form the new
ancestor group

Remark 7. This new ancestor group is essentially the minimal value among all of its equivalent
ancestor groups.

Pseudocode for the Optimization 4 algorithm is provided in Algorithm 9 located in Appendix A.

9 Optimization 5: Merging Neighboring Ancestors

Next, we can further reduce the bound by merging ”neighboring” outputs to a single output.

9.1 The (3, 2, 1) Game

Note that D(3, 2) = 11, so we are in base 11. We use A to represent the digit 10. We now present
several examples in Figure 16 to illustrate the new rule.

Consider when the two inputs are 0123456 and A987456 are the inputs. Then, the output will
be 4445664 according to our last optimization (Algorithm 9). However, if we instead generate a new
output of 0145064, then 4445664 will never be a valid output, thus reducing the number of valid
outputs. Again, this reduces the final bound due to Lemma 2.

Remark 8. The key idea of this optimization is to combine a set of ”neighboring” ancestor groups
like {3345, 3445, 3455} into a single output like {0345}.
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For completeness, we use an example where inputs are 0126346 and A987346. Focusing on A2(z),
we have 9 possible ancestor groups that turn into 1 ancestor group:

{3334, 3344, 3444, 0034, 0334, 0344, 1134, 1334, 1344} ⇒ {0134}.

Note that this optimization can also lead to changes in the last digit. For example, when the two
inputs are 0126346 and A987346, the output would have been 3334663 according to Algorithm 9.
However, with the new Algorithm 10, our output would instead be 0134065, and the last digit m(z) is
5 instead of 3. This is because when we apply Optimization 5, our merging of neighboring ancestors
makes A1(z) goes from 66 to 06. However, this results in A1(z) ≻ A0(x), as we have 06 ≻ 0126.
Before, we had A1(z) ̸≻ A0(x), as 66 ̸≻ 0126. Thus, recalling that we need A0(z) ̸≻ A1(x) for this
case (Equation 2), we need to exclude A1(x) = 34 as well when selecting the last digit A(z). This
leads to a choice of A0(z) = 5. Despite the introduction of ”fake” ancestor digits such as 0 and 1,
our output still satisfies the cycle avoidance rules as the new output was an existing output number
from Section 8.

With our optimization, we have that

B5(3, 2, 1) ≤
(
11

4

)(
11

2

)
· 11 = 199650.

9.2 Bound Reduction

In general, we can combine(
D(p, k)

1

)
,

(
D(p, k)

2

)
, . . . ,

(
D(p, k)

kj − 1

)
⇒
(
D(p, k)

kj

)
.

Thus, we reduce
kj∑
j=1

(
D(p, k)

j

)
⇒
(
D(p, k)

kj

)
.

Thus, our final bound with Optimization 5 is

B5(p, k, 1) ≤
p−1∏
i=0

(
D(p, k)

ki

)
.

For small values of p and k, Table 7 shows a comparison between B4(p, k, 1) and B5(p, k, 1).

Table 7: Comparison between B4(p, k, 1) and B5(p, k, 1)

old, new k = 2 k = 3 k = 4 k = 5

p = 2 75, 50 1750, 1200 54621, 40460 2175706, 1710280
p = 3 407286, 199650 48E11, 28E11 17E22, 11E22 25E36, 18E36
p = 4 60E12, 25E12 38E43, 22E43 59E103, 40E103 18E204, 14E204
p = 5 46E30, 18E30 16E142, 96E141 28E434, 19E434 68E1049, 52E1049
p = 6 52E68, 21E68 79E448, 47E448 11E1784, 78E1783 64E5330, 49E5330
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9.3 Approximation

Note that
(
n
k

)
≤ nk

k! . Furthermore, recall the previously derived bound from Optimization 2 and
Equation 11. Using this, we can derive that:

B5(p, k, 1) ≤
p−1∏
i=0

(
D(p, k)

ki

)
≤

p−1∏
i=0

D(p, k)i

(ki)!
=

D(p, k)f(k,p)∏p−1
i=0 (ki)!

=
B2(p, k, 1)∏p−1

i=0 (ki)!
≈ B0(p, k, 1)

e2k
p
2
∏p−1

i=0 (ki)!
.

The below figure shows the reduction factor f5(p, k) =
∏p−1

i=0 (k
i)! for some smaller p, k values:
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Figure 8: Log-scale plot of f5(p, k) for k = 2, k = 3, and k = 4.

9.4 The General Algorithm

As with the previous optimization, we update the convertibility criteria for Aj(z) ≻ Ai(x). In this
case, we require

Aj(z) ⊆ Ai(x) (15)

Compared to Equation 14, we are getting rid of |Ai(x)| − |Aj(z)| ≤ ki − kj . This condition is no
longer needed as we now guarantee that all inputs and outputs have distinct digits at each ancestor
level. When calling Algorithm 6, we apply this modified ancestor group convertibility check.

For ancestor-bookkeeping, the merging of neighboring ancestors is done by:

1. Getting the set of unique digits U in an ancestor group Ai(z)

2. Getting the set of unique digits W not in U

3. Getting the set F of (ki − len(U)) lowest digits from W

4. New ancestor group is sorted(U + F )

Remark 9. This new ancestor group is essentially the minimal value among all its neighboring
ancestor groups.

Pseudocode for the Optimization 5 algorithm is provided in Algorithm 10 located in Appendix A.
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10 Optimization 6: Pruning Unused Outputs

Our final optimization is very minor, simply reducing the number of possible outputs by considering
edge cases. Again, this reduces the bound due to Lemma 2.

10.1 The (3, 2, 1) Game

Recall that we are in base-11 and A represents the digit 10. We observe that some numbers like
{1234099, 12341AA, 12349A9, 12349AA} can never be the output of any player. In fact we can prove
the below claim:

Claim 1. For a valid output z of the (3, 2, 1) game, if m(z) ≥ 9, then m(z) /∈ A1(z).

Proof. In order for m(z) ≥ 9, it is necessary for A1(x) to be in the restricted digits (that is,
m(z) ̸≻ A1(x)), because the maximum number of unique digits in A2(x) and A2(y) is 8, which can
only make m(z) = 8 at most. Recall Equation 2. This requires A1(z) ≻ A2(x). However, since we
always need m(z) ̸≻ A2(x), if A1(z) ≻ A2(x), then we must have m(z) ̸≻ A1(z), which is in fact
m(z) /∈ A1(z).

An equivalent claim of the above (its contrapositive) is as below:

Claim 2. For a valid output z of the (3, 2, 1) game, if m(z) ∈ A1(z), then m(z) < 9.

Proof. Recall Equation 2 for the requirements of a winning strategy for the (3, 2, 1) game. Since
m(z) /∈ A2(x) and m(z) ∈ A1(z), we must have A1(z) ̸⊆ A2(x) (or A1(z) ̸≻ A2(x)), which means
no 2-cycles. From our construction method, there will be no contribution of A1(x) or A1(y) when
selecting the last digit m(z). Since the maximum number of unique digits in A2(x) and A2(y) is 8,
which can only make m(z) = 8 at most. Therefore, m(z) < 9.

We proceed with casework to calculate how many of these invalid outputs there are. We have

A1(z) ∈

{
{0A, 1A, . . . , 8A, 9A} if m(z) = A

{09, 19, . . . , 89, 9A} if m(z) = 9
(10 possibilities in each case).

Thus, the total number of invalid inputs is

20 ·
(
11

4

)
= 6600,

leaving us with a bound of 199650− 6600 = 193050. In other words, we have:

B6(3, 2, 1) ≤ 193050.

10.2 The (p, k, 1) Game

In general, we have the below claim:

Claim 3. For a valid output z of the (p, k, 1) game, if m(z) ∈ A1(z), then m(z) < D(p, k)−C(p−1) =
D(p, k)− (kp−1 − k2 + k).
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Proof. Recall Equation 3 for the requirements of a winning strategy for the (p, k, 1) game. Since
m(z) /∈ Ap(x) and m(z) ∈ A1(z), we must have A1(z) ̸⊆ Ap(x) (or A1(z) ̸≻ Ap(x)), which means
no (p− 1)-cycles. From our construction method, there will be no contribution of Ap−1(x) to the
restricted digits when selecting the last digitm(z). Since the maximum number of unique digits in the
rest of L-cycle avoidance is D(p, k)−C(p−1)−1, which can only make m(z) = D(p, k)−C(p−1)−1
at most. Therefore, m(z) < D(p, k)− C(p− 1) = D(p, k)− (kp−1 − k2 + k).

Claim 4. For a valid output z of the (p, k, 1) game, if m(z) ≥ D(p, k) − C(p − 1) = D(p, k) −
(kp−1 − k2 + k), then m(z) /∈ A1(z).

Proof. This is simply the contrapositive of the above claim.

In general, we have the below more general claim:

Claim 5. For a valid output z of the (p, k, 1) game, if m(z) ∈
⋂j

i=1Ai(z), where 1 ≤ j < ⌈p2⌉, then
m(z) < D(p, k)−

∑j
i=1 C(p− i) = D(p, k)−

∑j
i=1(k

p−i − k(ki − 1)− kf(k, i− 1)).

Proof. Recall Equation 3 for the requirements of a winning strategy for the (p, k, 1) game. Since
m(z) /∈ Ap(x) and m(z) ∈

⋂j
i=1Ai(z), we must have ∀1 ≤ i ≤ j, Ai(z) ̸⊆ Ap(x) (or Ai(z) ̸≻ Ap(x)),

which means no (p − i)-cycles. From our construction method, there will be no contribution of
Ap−i(x) to the restricted digits when selecting the last digit m(z). Since the maximum number

of unique digits in the rest of L-cycle avoidance is D(p, k)−
∑j

i=1 C(p− i), which can only make

m(z) = D(p, k)−
∑j

i=1 C(p− i) at most. Therefore, m(z) < D(p, k)−
∑j

i=1 C(p− i) = D(p, k)−∑j
i=1(k

p−i − k(ki − 1)− kf(k, i− 1)).

Based on the above Claim 3 – 5, we know there are some numbers that are invalid or unused
outputs, that is, the reduction from Optimization 6 is generally nonzero. However, it is difficult to
find a closed-form formula for Optimization 6 for general p and k. Even if it is found, it is expected
to be a complex expression using the Inclusion-Exclusion Principle (https://en.wikipedia.org/
wiki/Inclusion%E2%80%93exclusion_principle). Thus, we provide closed-form estimates for
smaller values of p = 2, 3, 4, 5 instead.

10.3 Case-by-Case Reductions

1. For B(2, k, 1) the reduction is zero, as we cannot apply Optimization 6.

2. For B(3, k, 1) only A1(z)m(z) contributes to the reduction, yielding(
D(p, k)− 1

k − 1

)
· k ·

(
D(p, k)

k2

)
.

3. For B(4, k, 1) likewise only A1(z)m(z) contributes to the reduction, giving(
D(p, k)− 1

k − 1

)
· (k3 − k2 + k) ·

(
D(p, k)

k3

)
·
(
D(p, k)

k2

)
.

4. For B(5, k, 1) both A2(z)m(z) and A1(z)m(z) contribute to the reduction. This leads to a
reduction of at least the below part due to A1(z)m(z) contribution(

D(p, k)− 1

k − 1

)
· (k4 − k2 + k) ·

(
D(p, k)

k4

)
·
(
D(p, k)

k3

)
·
(
D(p, k)

k2

)
.
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5. For B(p, k, 1) with p > 5, each of A⌈ p
2
⌉−1(z)m(z), . . . , A1(z)m(z) contributes to the reduction.

This leads to a reduction of at least the below part due to A1(z)m(z) contribution(
D(p, k)− 1

k − 1

)
· (kp−1 − k2 + k) ·

p−1∏
i=2

(
D(p, k)

ki

)
.

As this optimization yields only a marginal improvement to the bound, we omit its algorithm
description from Appendix A.

11 Combined Optimizations

We now provide a brief summary of our results after applying all 6 optimizations. In general, we get:

B5(p, k, 1) ≤
p−1∏
i=0

(
D(p, k)

ki

)
.

More precisely, we have:

B6(p, k, 1) ≤
p−1∏
i=0

(
D(p, k)

ki

)
−
(
D(p, k)− 1

k − 1

)
· (kp−1 − k2 + k) ·

p−1∏
i=2

(
D(p, k)

ki

)
.

Table 8 shows the reduction to B(3, 2, 1) after applying each optimization.

Table 8: Reduction of the oblivious B(3, 2, 1) bound

B(3, 2, 1) original opt1 opt2 opt3 opt4 opt5 opt6

bound 157 137 117 726726 407286 199650 193050
reduction 0 108,110,858 43,261,346 18,760,445 319,440 207,636 6,600
ratio 100% 36.7% 11.4% 0.425% 0.238% 0.117% 0.113%

Thus, we reduce the original bound of 157 ≈ 171 million to just 193,050, which is less than
0.113% of the original.

The following tables show similar reductions for other parameter settings. As these parameters
are relatively large, we report the base-10 logarithm of the reduction ratio.

Table 9: Reduction of the oblivious B(3, 3, 1) bound

B(3, 3, 1) original opt1 opt2 opt3 opt4 opt5 opt6

bound 4013 3713 3113 3.5× 1013 4.8× 1012 2.8× 1012 2.7× 1012

log(ratio) 0 1.014 3.314 16.745 18.737 19.292 19.301
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Table 10: Reduction of the oblivious B(3, 4, 1) bound

B(3, 4, 1) original opt1 opt2 opt3 opt4 opt5 opt6

bound 8521 8121 6921 4.5× 1024 1.7× 1023 1.1× 1023 1.1× 1023

log(ratio) 0 1.012 4.379 36.522 39.804 40.204 40.207

Table 11: Reduction of the oblivious B(4, 2, 1) bound

B(4, 2, 1) original opt1 opt2 opt3 opt4 opt5 opt6

bound 3115 2915 2315 5.5× 1014 6.0× 1013 2.5× 1013 2.4× 1013

log(ratio) 0 1.000 4.477 17.559 19.768 20.649 20.672

Table 12: Reduction of the oblivious B(4, 3, 1) bound

B(4, 3, 1) original opt1 opt2 opt3 opt4 opt5 opt6

bound 12140 11840 10340 4.6× 1047 3.8× 1044 2.2× 1044 2.1× 1044

log(ratio) 0 1.004 6.442 82.076 89.180 89.727 89.733

12 Conclusion and Future Work

12.1 Summary of Contributions

We established several theorems concerning novelty games and used them to optimize the winning
strategy, yielding significant improvements to the best known oblivious bounds. In particular, we
improved the bound B(p, k, 1) from the original qr, with our new bound being

B(p, k, 1) ≤
p−1∏
i=0

(
D(p, k)

ki

)
.

12.2 Future Directions

One possible direction is to find a revised algorithm and a subset of valid outputs and see if their
descendants are the same as themselves, thus reducing the upper bound. Or find a better algorithm
to beat the existing upper bound for some smaller special p, k values.

Another direction is to find a better lower bound on N .
We will use the same B(p, k, 1) symbol to denote the lower bound. The only known lower bound

for general novelty games is the trivial estimate from [LS24]:

B(p, k, 1) ≥ pk + 1.
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Establishing a stricter lower bound would therefore represent meaningful progress in the theory of
novelty games.

12.2.1 Combinatorial Entropy Encoding

In information theory, entropy encoding refers to any lossless compression method that seeks to
approach the lower bound on average code length determined by Shannon’s source coding theorem
(https://en.wikipedia.org/wiki/Shannon%27s_source_coding_theorem). Typical schemes in-
clude Huffman coding and arithmetic coding, which assign shorter codewords to more probable
symbols (https://en.wikipedia.org/wiki/Entropy_coding).

In the context of the (p, k, 1) novelty game, both types of known strategies (oblivious and
non-oblivious) can be viewed as strategies for encoding ancestry information into each output
number. More specifically:

1. For oblivious strategies, the output is constructed by explicitly concatenating all ancestor
labels or input-history data into the novelty number. This approach behaves like a näıve
fixed-length code, with description length growing in proportion to the number of ancestors.

2. For non-oblivious strategies, the output embeds a reference to a previously generated novelty
number, along with just enough extra information to ensure the new number is novel. This
mirrors dictionary or delta coding methods, where prior symbols are reused to reduce the
overall description length.

Oblivious strategies thus yield outputs with large description lengths, analogous to ignoring any
redundancy in the source. Non-oblivious strategies achieve more compact outputs by exploiting
structure in the sequence of novelty numbers, similar to how entropy-coding schemes reduce average
code length by reusing common patterns.

12.2.2 Novelty Game Interpreted as Complete k-ary Tree

The (p, k, 1) novelty game can be interpreted as a complete k-ary tree. We can draw an inverted
complete tree. The top level contains the p-th level ancestors, there are kp such ancestors. The next
level contains kp−1 ancestors, and so on. The bottom level has only one vertex. As long as each
vertex in this tree is novel to its own ancestors, then this is a winning strategy for this specific input
set. A winning strategy must hold novelty for all such possible input sets.

Note for non-oblivious strategies, the mappings between two adjacent levels can be different,
since such a mapping corresponds to a specific player.

Figure 9 illustrates a 4-level complete binary tree for the (3, 2, 1) novelty game.
With the help of interpreting novelty games as complete k-ary tree, we have the below claims:

Claim 6. B(p, k, 1) ≥ kp + 1.

Proof. If N ≤ kp, then we can put all the distinct numbers at the topmost level of the complete
k-ary tree. (If N < kp, then there will be some empty vertices at the top level, and we can fill
the remaining empty vertices with any of those N numbers). For any specific strategy, when the
topmost level vertices are specified, the remaining vertices in the tree are fully determined. To meet
the novelty property, the bottom vertex must have a distinct number from all its ancestors, that is,
all other vertices in this tree. If N ≤ kp, then we have no new number for this bottom vertex, so
there is no any winning strategy. This means that we must have at least kp + 1 distinct numbers.
Therefore, B(p, k, 1) ≥ kp + 1.
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Figure 9: Complete binary tree for the (3, 2, 1) novelty game

1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

This kp + 1 bound is a slightly improved lower bound than pk + 1, however, it is still a very
trivial lower bound.

Claim 7. D(p, k) ≥ kp + 1 for oblivious ancestor-bookkeeping strategies of the (p, k, 1) game.

Proof. Consider the ancestor bookkeeping strategy as a complete k-ary tree. For a (p + 1)-level
k-ary tree, the topmost level contains kp ancestors, and the next level contains kp−1 ancestors, ...,
and the bottom level contains only one single output number. For a specific strategy, as long as the
topmost kp ancestors are chosen, then the numbers at all other levels are fully determined. The kp

ancestors are completely independent from one another, so it is always possible to choose different
last digits for them. For ancestor-bookkeeping strategies, the last digits of those kp ancestors are
not kept in the output number due to space restriction, and we must let the last digit of the output
be distinct from all these kp ancestors. And we need one more unique digit for the output number
itself. Therefore, D(p, k) ≥ kp + 1.

12.2.3 Conjectures

We will provide two conjectures on the lower bound of novelty games to elicit further research.
Conjecture 1. For oblivious ancestor-bookkeeping strategies with p > 2 players, the lower bound

is

B(p, k, 1) ≥
p−1∏
i=0

(
kp + 1

ki

)
.

This conjecture comes from the observation or the above claim that D(p, k) ≥ kp + 1, and then
the same Optimizations 3,4,5 can apply, but Optimization 6 does not apply, so we can derive this
formula for the lower bound.

This is probably also the lower bound for all oblivious strategies, since all oblivious strategies
are this ancestor-bookkeeping type strategies.

Some conjectured lower bounds for smaller p, k values:

B(3, 2, 1) ≥
(
9

4

)(
9

2

)(
9

1

)
= 40824
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B(3, 3, 1) ≥
(
28

9

)(
28

3

)(
28

1

)
= 633556123200 ≈ 6.3E11

B(4, 2, 1) ≥
(
17

8

)(
17

4

)(
17

2

)(
17

1

)
= 133767233600 ≈ 1.3E11

Conjecture 2. B(p, k, 1) ≥ B(2, k, 1)k
p−2

.
This should be the lower bound for all strategies, including both oblivious and non-oblivious

strategies.
This comes from the recursive novelty property (Subsubsection 12.2.4): B(p, k, 1) ≥ B(p −

1, k, 1)k, which comes from the observation that all inputs must contribute to the output equally:
If any single input does not contribute to the output at all, then we can always choose the same
value as the output to be one ancestor of this input, to violate the novelty property. As a result,
the most efficient output is the simple concatenation of the novelty components from all k inputs,
which is similar as the most efficient coding is equal-length Huffman encoding if all letters are equal
probability. That is, to get a (p, k, 1) strategy from a (p− 1, k, 1) strategy, the best way is by using
k-dimensions, and each dimension is B(p− 1, k, 1).

One intuitive thinking is using information theory. There is some limit for B(p, k, 1), which is
due to the inherent entropy of the probability space of all the strategies (mappings from

(
N
k

)
inputs

to N − k outputs). Such an entropy can be described by at least log2N = log2B(p, k, 1) bits, by
algorithm complexity or Kolmogorov complexity or AIT (Algorithm Information Theory https:

//en.wikipedia.org/wiki/Algorithmic_information_theory). Note this entropy is irreducible.
And because the k inputs are i.i.d. (independent and identically distributed), the new entropy of
the (p+ 1, k, 1) novelty game is the addition of them, thus the new entropy can only be described
by at least k · log2N bits, which means B(p+ 1, k, 1) ≥ Nk.

Another thinking or way to understand is: each number is a probability variable or entropy
variable, which stands for the number of cases or combinations in itself to allow room for novelty. If
this variable contains more cases, then it means more entropy and thus require more digits/bits to
encode. With a single player, each input/output is almost fixed, with very low or lowest possibilities,
that is why B(1, k, 1) can be encoded in k + 1 ways. With two and more players, the number of
possibilities increase exponentially (the number of highest level ancestors becomes k times more
with one more player), thus this conjecture.

The k-ary complete tree (Figure 9) may help to understand it too. Each level adds k more times
of ancestors, which adds k times of digits to encode or represent such added complexity.

12.2.4 Recursive Novelty Property

Figure 10 illustrates the recursive novelty property for novelty games. This is for k = 3 case. Each
input x, y, z needs to provide k = 3 novelty components at the same time to guarantee that there is
always one novelty component available for the output to pick. For example, x1, x2, x3 are 3 novelty
components (or numbers) for the (p− 1, k, 1) game. The output u consists of at least one novelty
component from each input, to ensure novelty with all ancestors of x, y, z. Therefore, we must have
this property B(p, k, 1) ≥ B(p− 1, k, 1)k.

Note each input must contribute at least one novelty component to the output u. If an input
like x does not contribute to the output u at all, then we will be able to freely choose the ancestor
of this input x, that is, we can let one ancestor of x be exactly the same as the output u, to find
a counterexample to violate the novelty property. Therefore, each input must contribute to the
output.
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Also, since all the k inputs are equal, the novelty component contribution to the output must
also be equal.

Figure 10: Recursive novelty property for k = 3 case

x1 x2 x3 + y1 y2 y3 + z1 z2 z3 ⇒ x1 y2 z3

Claim 8. B(p, k, 1) ≤ (k + 1)k
p−1

.

Proof. Using this recursive novelty approach, we can get a more trivial non-oblivious strategy:
start from B(1, k, 1) = k + 1, we can get B(2, k, 1) = B(1, k, 1)k = (k + 1)k, and then B(3, k, 1) =
B(2, k, 1)k = (k + 1)k

2
. And for general p, we get B(p, k, 1) = (k + 1)k

p−1
.

We know that there is an optimized bound for B(2, k, 1) = O(k22k), which is smaller than our
new trivial bound B(2, k, 1) = (k+1)k. However, there is no such further optimization for B(3, k, 1),
therefore, the conjecture is B(p, k, 1) ≥ B(2, k, 1)k

p−2
, better than the above B(1, k, 1)k

p−1
.

If this conjecture is true, and since we already know that there exists such a winning strategy
[LS24] for N = B(2, k, 1)k

p−2
, then we know the exact bound for novelty games: B(p, k, 1) =

B(2, k, 1)k
p−2

.
Another future direction is to find a better B(3, k, 1) result than B(2, k, 1)k using other novel

approaches like graph or projective geometry methods, then this conjecture can be improved to be
B(p, k, 1) = B(3, k, 1)k

p−3
.
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A Full Algorithms

This appendix provides pseudocode for the ancestor-bookkeeping strategy and its optimizations for
the novelty (p, k, 1) game, as referenced in previous sections. Algorithm 1 and Algorithm 3 describe
the baseline strategy, while Algorithm 5–10 implement Optimizations 1–5. Optimization 6 consists
of highly specific casework, so we did not find it worthwhile to include a general algorithm for it.

Note in the below algorithms, when a number x is represented as base-t array, the index of the
right-most digit is 0. When converting x to base-t array, the number of digits in the array is kp−1

k−1 .
Also for an array A, we use sorted(A) to denote the sorted result of this array A in non-decreasing
order.

Algorithm 1 The original ancestor-bookkeeping algorithm for (p, k, 1)

Input: Parameters p, k; inputs x1, . . . , xk
t← kp+1−1

k−1
Get the base-t representation array of x1, . . . , xk
Get Ai subarrays of all k inputs, each input xj is in form of Ap−1Ap−2...A2A1A0 or

⊕p−1
i=0 Ai

for i in range [1, p− 1] do
Ai(z) =

⊕k
j=1Ai−1(xj)

end for
Output: ancestor digits A(z)

Algorithm 2 The original last digit selection algorithm for (p, k, 1)

Input: Parameters p, k; inputs x1, . . . , xk, and the ancestor digits A(z) of output z

t← kp+1−1
k−1

Get the base-t representation array of x1, . . . , xk
Get Ap−1 subarrays of all k inputs
s← the set of all unique digits in A(z) of the output and the Ap−1 subarrays of all k inputs
v ← smallest digit in the set [0 : t− 1]− s ▷ such a digit always exists
Output: the last digit v

Algorithm 3 The original (p, k, 1) algorithm without any optimization in Subsection 4.2

Input: Parameters p, k; inputs x1, . . . , xk
t← kp+1−1

k−1
Get the base-t representation array of x1, . . . , xk
Get ancestor digits A(z) of the output using the above ancestor-bookkeeping Algorithm 1
Get the last digit v of the output using the above last digit selection Algorithm 2
Get the value of the new base-t array A(z)v and assign to z
Output: z
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Algorithm 4 The last digit selection algorithm for Optimization 1: Input Avoidance

Input: Parameters p, k; inputs x1, . . . , xk
t← kp+1−1

k−1 − k
s← the set of all unique digits of the k inputs
d← |s|
if d < t then

v ← smallest digit in the set [0 : t− 1]− s ▷ such a digit always exists
else

v ← m(xi), where m(xi) ̸∈ A(xi) ▷ such a digit always exists
end if
Output: the last digit v

Algorithm 5 The (p, k, 1) algorithm for Optimization 1: Input Avoidance

Input: Parameters p, k; inputs x1, . . . , xk
t← kp+1−1

k−1 − k
Get the base-t representation array of x1, . . . , xk
Get Ai subarrays of all k inputs, each input xj is in form of Ap−1Ap−2...A2A1A0

Run the ancestor-bookkeeping Algorithm 1 to create ancestor digits A(z) of the output z
Get the last digit v of the output with new last digit selection Algorithm 4
Get the value of the new base-t array A(z)v and assign to z
Output: z

Algorithm 6 The last digit selection algorithm for Optimization 2: Cycle Avoidance

Input: Parameters p, k; inputs x1, . . . , xk, and A(z) = Ap−1Ap−2...A2A1 of output z
t← D(p, k) ▷ Digit range from Equation 10
Get the base-t representation array of x1, . . . , xk
Get Ai subarrays of all k inputs, each input xj is in form of Ap−1Ap−2...A2A1A0

Now generate the last digit v of the output number with below new rules
s← the set of all unique digits in the Ap−1 subarrays of the k inputs
for i in range [1, ⌈p2⌉ − 1] do ▷ Theorem 3

for j in range [1, k] do ▷ All inputs
f ← FALSE ▷ No-cycle flag
for m in range [1, i] do ▷ Lemma 3

if Am(z) ̸≻ Ap−i−m+1(xj) then ▷ Equation 12 for ≻ check
f ← TRUE ; break

end if
end for
if f not TRUE then

Add unique digits of Ap−i−1(xj) to set s
end if

end for
end for
v ← smallest digit in the set [0 : t− 1]− s ▷ such a digit always exists
Output: the last digit v
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Algorithm 7 The (p, k, 1) algorithm with Optimization 2: Cycle Avoidance

Input: Parameters p, k; inputs x1, . . . , xk
t← D(p, k) ▷ Digit range from Equation 10
Get the base-t representation array of x1, . . . , xk
Get Ai subarrays of all k inputs, each input xj is in form of Ap−1Ap−2...A2A1A0

Run the ancestor-bookkeeping Algorithm 1 to create ancestor digits A(z) of the output z
Get the last digit v of the output with new last digit selection Algorithm 6
Get the value of the new base-t array A(z)v and assign to z
Output: z

Algorithm 8 The (p, k, 1) Algorithm with Optimization 3: Reordering Ancestors

Input: Parameters p, k; inputs x1, . . . , xk
t← D(p, k) ▷ Digit range from Equation 10
y ← A(y)v from Algorithm 7 ▷ Equation 13 for ≻ check
L← 1 ▷ The ancestor level
low ← 1, high← k ▷ Bounds of A1(y)
while L < p do

AL(y)← sorted(AL(y)) ▷ AL(y) = [low : high]
L← L+ 1
low ← high+ 1
high← high+ kL

end while
Reconstruct the base-t number A(y)v and assign to z
Output: z

Algorithm 9 The (p, k, 1) algorithm with Optimization 4: Merging Equivalent Ancestors

Input: Parameters p, k; inputs x1, . . . , xk
t← D(p, k) ▷ Digit range from Equation 10
y ← A(y)v from Algorithm 7 ▷ Equation 14 for ≻ check
L← 1 ▷ The ancestor level
low ← 1, high← k ▷ Bounds of A1(y)
while L < p do

U ← the set of unique digits of AL(y) = [low, high]
dmin ← min(U)
AL(y)← [dmin] ∗ (kL − len(U))

⊕
sorted(U)

L← L+ 1
low ← high+ 1
high← high+ kL

end while
Reconstruct the base-t number A(y)v and assign to z
Output: z
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Algorithm 10 The (p, k, 1) algorithm with Optimization 5: Merging Neighboring Ancestors

Input: Parameters p, k; inputs x1, . . . , xk
t← D(p, k) ▷ Digit range from Equation 10
A(z)← from Algorithm 1
L← 1 ▷ The ancestor level
low ← 1, high← k ▷ Bounds of A1(z)
while L < p do

U ← the set of unique digits of AL(z) = [low, high]
W ← [D(p, k)]− U
F ← the set of (kL − len(U)) lowest digits from W ▷ F is set of ”fake” digits
AL(z)← sorted(U + F )
L← L+ 1
low ← high+ 1
high← high+ kL

end while
v ← from updated A(z) with Algorithm 6 ▷ Equation 15 for ≻ check
Reconstruct the base-t number A(z)v and assign to z
Output: z

B Examples of Inputs and Output for Various Algorithms

This appendix provides some examples to illustrate the output number generation from some specific
input numbers, to help understand the algorithms of the baseline strategy and various optimizations.
The below Figure 11 is an example of inputs and output for the original baseline algorithm of the
(3, 2, 1) novelty game. And other figures are input/output examples for various optimizations.

The original algorithm Figure 11 simply concatenates all ancestor groups of the inputs at the
same level and selects one unused unique digit as the last digit m(z) to construct the output.

For Optimization 1 of input avoidance Figure 12, notice that the last digit m(z) of the output
number can be the same as one of the input numbers which does not appear in the ancestor digits
of all inputs. For Optimization 2 of cycle avoidance Figure 13, notice that the last digit m(z) of the
output number can also be the same as one of the input numbers, although the last digit selection
rule (2) is different from Optimization 1.

For Optimization 3 of reordering ancestors Figure 14, its last digit A0(z) or m(z) is the same as
Optimization 2 of cycle avoidance, while the only difference is the digit order in each ancestor group
Ai(z) is fixed in non-decreasing order. As a result, some numbers like 4565644, 5546464 become
invalid outputs, and are replaced by the same valid output 4556464.

For Optimization 4 of merging equivalent ancestors Figure 15, notice that each ancestor group
is replaced by its equivalent ancestor group. 4565, 5546, 5646 now become invalid ancestor group
digits and are replaced by the same equivalent ancestor group 4456.

For Optimization 5 of merging neighboring ancestors Figure 16, notice that each ancestor group
is replaced by its ”neighboring” ancestor group. 1413, 1314, 0304 become invalid ancestor group
digits and are replaced by the same neighboring ancestor group 0134. As a result, the ancestor
group digits of a valid output must contain unique digits in sorted order, thus significantly reducing
the number of valid outputs.

For Optimization 6 of pruning unused outputs, we can see from Figure 17 that it is impossible
to reach m(z) = 9 or m(z) = A if A1(z) contains the digit 9 or A. Therefore, we can remove such
unused outputs from the set of vertices to reduce the bound.
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Figure 11: Original algorithm or baseline algorithm

0123 45 6 + EDCB A9 8 ⇒ 45A9 68 7

Figure 12: Optimization 1 algorithm of input avoidance

0123 45 6 + CBA9 87 6 ⇒ 4587 66 6

0123 45 3 + CBA9 87 6 ⇒ 4587 36 6

Figure 13: Optimization 2 algorithm of cycle avoidance

0123 45 6 + A987 65 4 ⇒ 4565 64 4

0123 45 2 + A987 65 3 ⇒ 4565 23 6

Figure 14: Optimization 3 algorithm of reordering ancestors

0123 45 6 + A987 65 4 ⇒ 4556 46 4

0123 55 4 + 789A 46 6 ⇒ 4556 46 4

Figure 15: Optimization 4 algorithm of merging equivalent ancestors

0123 45 6 + A987 65 4 ⇒ 4456 46 4

0123 55 4 + 789A 46 6 ⇒ 4456 46 4

0123 56 4 + 789A 46 6 ⇒ 4456 46 4
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Figure 16: Optimization 5 algorithm of merging neighboring ancestors

0123 03 6 + 789A 14 0 ⇒ 0134 06 4

0123 14 6 + 789A 13 6 ⇒ 0134 06 4

0246 13 6 + 789A 14 6 ⇒ 0134 06 5

0126 03 6 + 789A 04 0 ⇒ 0134 06 4

Figure 17: Optimization 6 algorithm of pruning unused outputs

0123 89 9 + 4567 89 0 ⇒ 0189 09 8

0123 23 A + 4567 13 A ⇒ 0123 0A 8

0123 45 A + 789A 67 9 ⇒ 4567 9A 6

0123 03 8 + 4567 04 9 ⇒ 0134 89 8
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