From External to Swap Regret 2.0: An Efficient Reduction for Large Action Spaces Presentation by: Maxwell Fishelson

Collaborators

Yuval Dagan

Costis Daskalakis

Maxwell Fishelson

Noah Golowich

Collaborators

Yuval Dagan

Costis Daskalakis

Maxwell Fishelson

Noah Golowich

Concurrent work: Binghui Peng, Aviad Rubinstein [PR23]

No Swap Regret

No Swap Regret Online Learning

No Swap Regret Online Learning with many actions

No Swap Regret ? Online Learning with many actions

No Swap Regret ? Online Learning with many actions

No Swap Regret ? Online Learning ? with many actions ?

	A	B	С	D
1				

	A	B	С	D
1				

	A	Β	С	D
1	0.1	0.3	0.9	0.5

	A	B	С	D
1	0.1	0.3	0.9	0.5
2				

	A	B	С	D
1	0.1	0.3	0.9	0.5
2				

	A	B	С	D
1	0.1	0.3	0.9	0.5
2	0.8	0.4	0	0.2

	A	Β	С	D
1	0.1	0.3	0.9	0.5
2	0.8	0.4	0	0.2
3				

	A	B	С	D
1	0.1	0.3	0.9	0.5
2	0.8	0.4	0	0.2
3				

	A	Β	С	D
1	0.1	0.3	0.9	0.5
2	0.8	0.4	0	0.2
3	0.1	0.2	0.3	0.4

	A	Β	С	D
1	0.1	0.3	0.9	0.5
2	0.8	0.4	0	0.2
3	0.1	0.2	0.3	0.4

	A	Β	С	D
1	0.1	0.3	0.9	0.5
2	0.8	0.4	0	0.2
3	0.1	0.2	0.3	0.4

$x^{(t)} \in \Delta_N$ $u^{(t)} \in [0,1]^N$

	A	Β	С	D
1	0.1	0.3	0.9	0.5
2	0.8	0.4	0	0.2
3	0.1	0.2	0.3	0.4

	A	Β	С	D
1	0.1	0.3	0.9	0.5
2	0.8	0.4	0	0.2
3	0.1	0.2	0.3	0.4

Games:

Online vs Offline

Offline: $u^{(t)} \sim D$

Online: $u^{(t)} \leftarrow \overline{\omega}$ **Offline:** $u^{(t)} \sim D$

Games:

Online: $u^{(t)} \leftarrow \overline{\omega}$ **Offline:** $u^{(t)} \sim D$

Games:

Online vs Offline

100 Калани и карани и карани

Online: $u^{(t)} \leftarrow \overline{\omega}$ **Offline:** $u^{(t)} \sim D$

Games:

Online vs Offline

100 Конструкций Констру

Online: $u^{(t)} \leftarrow \overline{\upsilon}$

Games:

Online vs Offline

Offline: $u^{(t)} \sim D$

100 $u^{(t)} = \mathbf{i}$ стакти. На стакти и полити и 35

Regret

Regret

regret = reward obtained vs benchmark

Regret

regret = reward obtained vs benchmark

$$\frac{1}{T}\sum_{t=1}^{T} x^{(t)} \cdot u^{(t)}$$

$$\frac{1}{T}\sum_{t=1}^{T}x^{(t)}\cdot u^{(t)}$$

regret = reward obtained vs benchmark

regret = reward obtained vs benchmark

 ϕ

$$\frac{1}{T}\sum_{t=1}^{T}x^{(t)}\cdot u^{(t)}$$

 $\phi(x^{(1)}) \quad u^{(1)} \\ \phi(x^{(2)}) \quad u^{(2)} \\ \phi(x^{(3)}) \quad u^{(3)} \\ \vdots \\ \phi(x^{(T)}) \quad u^{(T)} \\ \end{array}$

regret = reward obtained vs benchmark

$$\frac{1}{T}\sum_{t=1}^{T}x^{(t)}\cdot u^{(t)}$$

$$\phi(x^{(1)})$$
 $u^{(1)}$
 $\phi(x^{(2)})$ $u^{(2)}$
 $\phi(x^{(3)})$ $u^{(3)}$
 \vdots
 $\phi(x^{(T)})$ $u^{(T)}$

$$\frac{1}{T}\sum_{t=1}^{T}\phi(x^{(t)})\cdot u^{(t)}$$

regret = reward obtained vs benchmark

 ϕ

$$\frac{1}{T}\sum_{t=1}^{T} x^{(t)} \cdot u^{(t)}$$

enchmark: $\operatorname{Best} \phi \in \Phi$

 $u^{(1)}$ $u^{(2)}$ $\phi(x^{(2)})$ $u^{(3)}$ $\phi(x^{(3)})$ $u^{(T)}$

$$\frac{1}{T}\sum_{t=1}^{T}\phi(x^{(t)})\cdot u^{(t)}$$

$$\frac{1}{T}\sum_{t=1}^{T} x^{(t)} \cdot u^{(t)}$$

Regret
$$(x^{(1:T)}, u^{(1:T)}) = \max_{\phi \in \Phi} \left(\frac{1}{7}\right)$$

regret = reward obtained vs benchmark

$$\frac{1}{T}\sum_{t=1}^{T} x^{(t)} \cdot u^{(t)}$$

Regret
$$(x^{(1:T)}, u^{(1:T)}) = \max_{\phi \in \Phi} \left(\frac{1}{7}\right)$$

Why?

 $\Phi = all \ constant \ maps$

 $\Phi = all \ constant \ maps$

 $\Phi = all \ constant \ maps$

Offline:

 $\Phi = all \ constant \ maps$

 $\Phi = all constant maps$

Online setting: we can do better!

Swap Regret

Swap Regret

 $\Phi = \text{all maps} [N] \to [N]$

Swap Regret

 $\Phi = \text{all maps} [N] \to [N]$

 $u^{(1)}$ Α $u^{(2)}$ Β $u^{(3)}$ Α $u^{(4)}$ Β

Swap Regret

Swap Regret

Α	Α
В	С
С	С
•	

Swap Regret

Α	Α
В	С
С	С
•	

Swap Regret

Α	Α
В	С
С	С
•	• • •

Swap Regret

Swap Regret

Χ Ζ

Swap Regret

Swap Regret

Why?

Swap Regret

Why? • L_2 Calibration

Swap Regret

Why?

- L_2 Calibration
- Games!

i i

 $y^{(1)}, y^{(2)}, \dots, y^{(T)}$

. .

ϵ external regret over T rounds \rightarrow average strategies are ϵ coarse-correlated-equilibrium

 ϵ external regret over T rounds \rightarrow average strategies are ϵ coarse-correlated-equilibrium ϵ swap regret over T rounds \rightarrow average strategies are ϵ correlated-equilibrium

Coarse **Deviations**

Game Equilibrium: Strategy profile where no player wants to deviate

CCE: No player wants to make a coarse deviation

Game Equilibrium: Strategy profile where no player wants to deviate

CCE: No player wants to make a coarse deviation

CE: No player wants to make a swap deviation

Game Equilibrium: Strategy profile where no player wants to deviate

- **CCE:** No player wants to make a coarse deviation
- **CE:** No player wants to make a swap deviation

NE: No player wants to make a swap deviation AND profile must be independent

Game Equilibrium: Strategy profile where no player wants to deviate

CCE: No player wants to make a coarse deviation

CE: No player wants to make a swap deviation

NE: No player wants to make a swap deviation AND profile must be independent

Swap Deviation

Stop Slow down Go

Swap Deviation

Swap Deviation

Swap Deviation

Swap Deviation

Game Equilibrium: Strategy profile where no player wants to deviate

Coarse Deviation

So why not Swap Regret? **Multiplicative Weight Updates:** ϵ -External-Regret for $T = \Omega\left(\frac{\log N}{\epsilon^2}\right)$

Blum-Mansour MWU [BM07]: ϵ -Swap-Regret for $T = \Omega\left(\frac{N \log N}{\epsilon^2}\right)$

Multiplicative Weight Updates: ϵ -External-Regret for $T = \Omega\left(\frac{\log N}{\epsilon^2}\right)$

Blum-Mansour MWU [BM07]: ϵ -Swap-Regret for $T = \Omega\left(\frac{N \log N}{\epsilon^2}\right)$

Question: can we improve for large N?

Multiplicative Weight Updates: ϵ -External-Regret for $T = \Omega\left(\frac{\log N}{\epsilon^2}\right)$

Blum-Mansour MWU [BM07]: ϵ -Swap-Regret for $T = \Omega\left(\frac{N \log N}{\epsilon^2}\right)$

Question: can we improve for large N?

Multiplicative Weight Updates: ϵ -External-Regret for $T = \Omega\left(\frac{\log N}{\epsilon^2}\right)$

YES [DD@G23]

• **Tree-Swap:** ϵ -Swap-Regret for $T = \log(N)^{\tilde{\Omega}(1/\epsilon)}$

- **Tree-Swap:** ϵ -Swap-Regret for $T = \log(N)^{\tilde{\Omega}(1/\epsilon)}$
- **Tree-Swap:** ϵ -Swap-Regret for $T = \text{Littlestone Dimension}(\mathscr{F})^{\tilde{\Omega}(1/\epsilon)}$

- **Tree-Swap:** ϵ -Swap-Regret for $T = \log(N)^{\tilde{\Omega}(1/\epsilon)}$
- **Tree-Swap:** ϵ -Swap-Regret for $T = \text{Littlestone Dimension}(\mathscr{F})^{\tilde{\Omega}(1/\epsilon)}$
- Bandit-Tree-Swap: ϵ -Swap-Regret for $T = N \log(N)^{\tilde{\Omega}(1/\epsilon)}$

- **Tree-Swap:** ϵ -Swap-Regret for $T = \log(N)^{\tilde{\Omega}(1/\epsilon)}$
- **Tree-Swap:** ϵ -Swap-Regret for $T = \text{Littlestone Dimension}(\mathscr{F})^{\tilde{\Omega}(1/\epsilon)}$
- Bandit-Tree-Swap: ϵ -Swap-Regret for $T = N \log(N)^{\overline{\Omega}(1/\epsilon)}$

• Communication Complexity of ϵ -CE: $\log(N)^{\tilde{\Omega}(1/\epsilon)}$
- **Tree-Swap:** ϵ -Swap-Regret for $T = \log(N)^{\overline{\Omega}(1/\epsilon)}$
- **Tree-Swap:** ϵ -Swap-Regret for $T = \text{Littlestone Dimension}(\mathscr{F})^{\tilde{\Omega}(1/\epsilon)}$
- Bandit-Tree-Swap: ϵ -Swap-Regret for $T = N \log(N)^{\overline{\Omega}(1/\epsilon)}$

- Communication Complexity of ϵ -CE: $\log(N)^{\tilde{\Omega}(1/\epsilon)}$
- Query Complexity of ϵ -CE: $N \log(N)^{\tilde{\Omega}(1/\epsilon)}$

- **Tree-Swap:** ϵ -Swap-Regret for $T = \log(N)^{\Omega(1/\epsilon)}$
- **Tree-Swap:** ϵ -Swap-Regret for $T = \text{Littlestone Dimension}(\mathscr{F})^{\tilde{\Omega}(1/\epsilon)}$
- Bandit-Tree-Swap: ϵ -Swap-Regret for $T = N \log(N)^{\overline{\Omega}(1/\epsilon)}$

- Communication Complexity of ϵ -CE: $\log(N)^{\Omega(1/\epsilon)}$
- Query Complexity of ϵ -CE: $N \log(N)^{\tilde{\Omega}(1/\epsilon)}$
- Extensive Form ϵ -CE: poly(m, I, A) for $\epsilon = \Omega(1)$

- **Tree-Swap:** ϵ -Swap-Regret for $T = \log(N)^{\Omega(1/\epsilon)}$
- **Tree-Swap:** ϵ -Swap-Regret for $T = \text{Littlestone Dimension}(\mathscr{F})^{\tilde{\Omega}(1/\epsilon)}$
- Bandit-Tree-Swap: ϵ -Swap-Regret for $T = N \log(N)^{\overline{\Omega}(1/\epsilon)}$

- Communication Complexity of ϵ -CE: $\log(N)^{\tilde{\Omega}(1/\epsilon)}$
- Query Complexity of ϵ -CE: $N \log(N)^{\Omega(1/\epsilon)}$
- Extensive Form ϵ -CE: poly(m, I, A) for $\epsilon = \Omega(1)$

. Tree-Adversary: Force learner to incur Swap Re

legret
$$\geq \epsilon$$
 for $T = O(1) \cdot \min\left\{\exp(\epsilon^{-1/6}), \frac{N}{\operatorname{poly}\log(N) \cdot \epsilon^2}\right\}$

- . Tree-Adversary: Force learner to incur Swap Re
- Oblivious

legret
$$\geq \epsilon$$
 for $T = O(1) \cdot \min\left\{\exp(\epsilon^{-1/6}), \frac{N}{\operatorname{poly}\log(N) \cdot \epsilon^2}\right\}$

- . Tree-Adversary: Force learner to incur Swap Re
- Oblivious
- Point functions: Littlestone Dimension 1

legret
$$\geq \epsilon$$
 for $T = O(1) \cdot \min\left\{\exp(\epsilon^{-1/6}), \frac{N}{\operatorname{poly}\log(N) \cdot \epsilon^2}\right\}$

- . Tree-Adversary: Force learner to incur Swap Re
- Oblivious
- Point functions: Littlestone Dimension 1
- Slide-Adversary: Force learner to incur Swap Regret $\geq \epsilon$ for $T = \exp(O(1) \cdot \epsilon^{-1/3})$

egret
$$\geq \epsilon$$
 for $T = O(1) \cdot \min\left\{\exp(\epsilon^{-1/6}), \frac{N}{\operatorname{poly}\log(N) \cdot \epsilon^2}\right\}$

Algorithms

$$u^{(1)}$$

$$u^{(2)}$$

$$\vdots$$

$$+u^{(t-1)}$$

$$U^{(t-1)} = [60, 120, 90]$$

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

$$u^{(1)}$$

$$u^{(2)}$$

$$\vdots$$

$$+u^{(t-1)}$$

$$U^{(t-1)} = [60, 120, 90]$$

$x^{(t)} = \text{Softmax}(\eta U^{(t-1)})$

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

$$u^{(1)}$$

$$u^{(2)}$$

$$\vdots$$

$$+u^{(t-1)}$$

$$U^{(t-1)} = [60, 120, 90]$$

$x^{(t)} = \text{Softmax}(\eta U^{(t-1)})$ = [.002, .95, .048]

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

Actions

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

	Actions
)	

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

Actions
$$x^{(1)} = \text{Softmax}(\eta U^{(0)})$$
 $x^{(2)} = \text{Softmax}(\eta U^{(1)})$ $x^{(3)} = \text{Softmax}(\eta U^{(2)})$

Actions
$$x^{(1)} = \text{Softmax}(\eta U^{(0)})$$
 $x^{(2)} = \text{Softmax}(\eta U^{(1)})$ $x^{(3)} = \text{Softmax}(\eta U^{(2)})$

Actions
$$x^{(1)} = \text{Softmax}(\eta U^{(0)})$$
 $x^{(2)} = \text{Softmax}(\eta U^{(1)})$ $x^{(3)} = \text{Softmax}(\eta U^{(2)})$ $x^{(4)} = \text{Softmax}(\eta U^{(3)})$

Actions
$$x^{(1)} = \text{Softmax}(\eta U^{(0)})$$
 $x^{(2)} = \text{Softmax}(\eta U^{(1)})$ $x^{(3)} = \text{Softmax}(\eta U^{(2)})$ $x^{(4)} = \text{Softmax}(\eta U^{(3)})$

Actions
$$x^{(1)} = \text{Softmax}(\eta U^{(0)})$$
 $x^{(2)} = \text{Softmax}(\eta U^{(1)})$ $x^{(3)} = \text{Softmax}(\eta U^{(2)})$ $x^{(4)} = \text{Softmax}(\eta U^{(3)})$ $x^{(5)} = \text{Softmax}(\eta U^{(4)})$

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

Actions

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

Actions

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

Actions	

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

Rewards

External Regret

	Actions
)	

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

Rewards

External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

 $U^{(0)}$

 $U^{(0)}$

(0				
	$x^{(0)} x^{(0)}$				

 $U^{(0)}$

$$\begin{array}{c}
0 \\
x^{(0)} x^{(0)} x^{(0)}
\end{array}$$

 $U^{(0)}$

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$0 T = BM$$

$$x^{(0)} x^{(0)} x^{(0)} x^{(B)} x^{(B)} x^{(B)} x^{(B)} x^{(2B)} x^{(2B)} x^{(2B)} x^{(3B)} x^{(3B)} x^{(3B)} x^{(3B)} \cdots$$

$$U^{(0)} U^{(B)} U^{(2B)} U^{(2B)} U^{(3B)}$$

MWU: ϵ -external-regret for $T = \Omega\left(\frac{\log N}{\epsilon^2}\right)$

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

MWU: ϵ -external-r

Lazy MWU: *c*-externa

regret for
$$T = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

al-regret for $M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

MWU: ϵ -external-r

Lazy MWU: *c*-externa

regret for
$$T = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

al-regret for $M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$

Why? - 7

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

MWU: ϵ -external-r

Lazy MWU: *c*-externa

regret for
$$T = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

al-regret for $M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$

Whv? **Fewer Actions**

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$x^{(0)} x^{(0)} x^{(0)} x^{(B)} x^{(B)} x^{(B)} x^{(B)} x^{(B)} x^{(C)}$$

Swap Regret

$(2B)_{\chi}(2B)_{\chi}(2B)$	$x^{(3B)}x^{(3B)}x^{(3B)}$	•••
------------------------------	----------------------------	-----

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$x^{(0)} x^{(0)} x^{(0)} x^{(B)} x^{(B)} x^{(B)} x^{(B)} x^{(B)} x^{(C)}$$

Swap Regret

$x^{(2D)}x^{(2D)}x^{(2D)}x^{(3D)}x^{(3D)}x^{(3D)}x^{(3D)}$	$(2B)_{\chi}(2B)_{\chi}(2B)$	$x^{(3B)}x^{(3B)}x^{(3B)}$	• • •
--	------------------------------	----------------------------	-------

 ϕ

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

Swap Regret

 $T = M^d$

Tree-Swap

1 Lazy-MWU instance: $[0, M^d]$

 $T = M^d$

Tree-Swap

1 Lazy-MWU instance: $[0, M^d]$

M Lazy-MWU instances: $[0, M^{d-1}], [M^{d-1}, 2M^{d-1}], \cdots$

 $T = M^d$

Tree-Swap

1 Lazy-MWU instance: $[0, M^d]$

M Lazy-MWU instances: $[0, M^{d-1}], [M^{d-1}, 2M^{d-1}], \cdots$

 M^2 Lazy-MWU instances: $[0, M^{d-2}], [M^{d-2}, 2M^{d-2}], \cdots$

1 Lazy-MWU instance: $[0, M^d]$

M Lazy-MWU instances: $[0, M^{d-1}], [M^{d-1}, 2M^{d-1}], \cdots$

 M^2 Lazy-MWU instances: $[0, M^{d-2}], [M^{d-2}, 2M^{d-2}], \cdots$

 M^{d-1} Lazy-MWU instances: [0,M], [M,2M], ...

Tree-Swap

1 Lazy-MWU instance: $[0, M^d]$

M Lazy-MWU instances: $[0, M^{d-1}], [M^{d-1}, 2M^{d-1}], \cdots$

 M^2 Lazy-MWU instances: $[0, M^{d-2}], [M^{d-2}, 2M^{d-2}], \cdots$

 M^{d-1} Lazy-MWU instances: $[0,M], [M,2M], \cdots$

Tree-Swap

1 Lazy-MWU instance: $[0, M^d]$

M Lazy-MWU instances: $[0, M^{d-1}], [M^{d-1}, 2M^{d-1}], \cdots$

 M^2 Lazy-MWU instances: $[0, M^{d-2}], [M^{d-2}, 2M^{d-2}], \cdots$

 M^{d-1} Lazy-MWU instances: $[0,M], [M,2M], \cdots$

Tree-Swap

${\mathcal X}$	${\mathcal X}$	${\mathcal X}$

X	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

x x x x x x x x x x x x x	x x x x x x x x x x x x x	x x x x x x x x x x .
---------------------------	---------------------------	-----------------------

۲

S

${\mathcal X}$	${\mathcal X}$	X

X	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

x x x x x x x x x x x x	x x x x x x x x x x x x x	x x x	x x x	x x
-------------------------	---------------------------	-------	-------	-----

۲

S	S	S

S	S	S	S	S	S	S	S	S
---	---	---	---	---	---	---	---	---

${\mathcal X}$	${\mathcal X}$	X

X	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

S	S	S	S	S	S	S	S	S
---	---	---	---	---	---	---	---	---

X	${\mathcal X}$	X

X	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

 $= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + R_d)$

${\mathcal X}$	${\mathcal X}$	X

X	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

•

Swap Regret
$$\leq$$

= $\frac{1}{d}(S_1 + S_2 + \cdots)$
= $\frac{1}{d}(S_1 - R_2 + \cdots)$

Tree-Swap Swap Regret

Swap Reward - Reward

- $+ S_d R_1 + R_2 + \dots + R_d$
- $+S_2 R_3 + S_3 R_4 + \cdots)$

X	${\mathcal X}$	X

X	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

•

Swap Regret
$$\leq$$

= $\frac{1}{d}(S_1 + S_2 + \cdots)$
= $\frac{1}{d}(S_1 - R_2)$ +

Tree-Swap Swap Regret

Swap Reward - Reward

- $+ S_d R_1 + R_2 + \dots + R_d$
- $+S_2 R_3 + S_3 R_4 + \cdots)$

X	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

 $= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + R_d)$ $=\frac{1}{d}(S_1 - R_2) + S_2 - R_3 + S_3 - R_4 + \cdots)$

Tree-Swap Swap Regret

<i>x x</i>	X	x	X						
------------	---	---	---	--	--	--	--	--	--

Swap Regret =
=
$$\frac{1}{d}(S_1 + S_2 + \cdots)$$

= $\frac{1}{d}(S_1 - R_2)$ +

Swap Reward - Reward

- $+ S_d R_1 + R_2 + \dots + R_d$
- $+S_2 R_3 + S_3 R_4 + \cdots)$

Swap Regret =
=
$$\frac{1}{d}(S_1 + S_2 + \cdots)$$

= $\frac{1}{d}(S_1 - R_2)$ +

Swap Reward - Reward

- $+ S_d R_1 + R_2 + \dots + R_d$
- $+S_2 R_3 + S_3 R_4 + \cdots)$

	X	X	X			
--	---	---	---	--	--	--

Swap Regret =
=
$$\frac{1}{d}(S_1 + S_2 + \cdots)$$

= $\frac{1}{d}(S_1 - R_2)$ +

Swap Reward - Reward

 $+ S_d - R_1 + R_2 + \dots + R_d$

 $+S_2 - R_3 + S_3 - R_4 + \cdots)$

 $=\frac{1}{d}(S_1 - R_2) + S_2 - R_3 + S_3 - R_4 + \cdots)$

Swap Regret = Swap Reward - Reward

 $= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + R_d)$

Swap Regret = Swap Reward - Reward

 $= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + R_d)$

 $=\frac{1}{d}(S_1 - R_2) + S_2 - R_3 + S_3 - R_4 + \cdots)$

Swap Regret = Swap Reward - Reward $= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + R_d)$ $=\frac{1}{d}(S_1 - R_2) + S_2 - R_3 + S_3 - R_4 + \cdots)$

X	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

 $= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + R_d)$ $=\frac{1}{d}(S_1 - R_2) + S_2 - R_3 + S_3 - R_4 + \cdots)$

Tree-Swap Swap Regret

x	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

Swap Regret = Swap Reward - Reward $= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + R_d)$ $= \frac{1}{d} (S_1 - R_2) + S_2 - R_3 + S_3 - R_4 + \cdots)$ \leq average of external regret of row 2 Lazy-MWU

X	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

For
$$M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

External Regret(Lazy MWU) $\leq \epsilon$

 $=\frac{1}{d}(S_1 - R_2) + S_2 - R_3 + S_3 - R_4 + \cdots)$

- $= \frac{1}{d}(S_1 + S_2 + \dots + S_d R_1 + R_2 + \dots + R_d)$

 - \leq average of external regret of row 2 Lazy-MWU

X	X	X	X	X	X	X	X	X
---	---	---	---	---	---	---	---	---

For
$$M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

External Regret(Lazy MWU) $\leq \epsilon$

 $=\frac{1}{d}(S_1 - R_2) + S_2 - R_3 + S_3 - R_4 + \cdots)$ $\leq \epsilon$

- $= \frac{1}{d}(S_1 + S_2 + \dots + S_d R_1 + R_2 + \dots + R_d)$

 - \leq average of external regret of row 2 Lazy-MWU

 $\leq \epsilon$

Tree-Swap Swap Regret

<i>S S S S S S S S</i>	S
------------------------	---

$$+S_d - R_1 + R_2 + \dots + R_d)$$

$$(S_2 - R_3 + S_3 - R_4 + \dots)$$

 $\leq \epsilon \leq \epsilon$

Tree-Swap Swap Regret

Swap Regret = Swap Reward - Reward

 $= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + R_d)$ $= \frac{1}{A}(S_1 - R_2 + S_2 - R_3 + S_3 - R_4 + \cdots)$

X	${\mathcal X}$	${\mathcal X}$

X	X	X	X	X	X	X	X	x
---	---	---	---	---	---	---	---	---

For
$$M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

External Regret(Lazy MWU) $\leq \epsilon$

 $= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + R_d)$ $=\frac{1}{d}(S_1 - R_2 + S_2 - R_3 + S_3 - R_4 + \cdots)$

- Swap Regret = Swap Reward Reward

${\mathcal X}$	${\mathcal X}$	${\mathcal X}$

X	X	x	X	X	x	X	X	x
---	---	---	---	---	---	---	---	---

For
$$M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

External Regret(Lazy MWU) $\leq \epsilon$

Swap Regret =

$$= \frac{1}{d} (S_1 + S_2 + \cdots)$$

$$= \frac{1}{d} (S_1 - R_2 + \cdots)$$

$$\leq \frac{1}{d} (\epsilon + \epsilon + \cdots)$$

- **Swap Reward Reward**
- $+ S_d R_1 + R_2 + \dots + R_d$
- $-S_2 R_3 + S_3 R_4 + \cdots)$

 (S_d)

${\mathcal X}$	${\mathcal X}$	${\mathcal X}$

X	X	x	X	X	x	X	X	x
---	---	---	---	---	---	---	---	---

For
$$M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

External Regret(Lazy MWU) $\leq \epsilon$

Swap Regret = Swap Reward - Reward

$$= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + R_d)$$

$$= \frac{1}{d}(S_1 - R_2 + S_2 - R_3 + S_3 - R_4 + \dots)$$

$$\leq \frac{1}{d}(\epsilon + \epsilon + \dots + S_d)$$

 R_d)

${\mathcal X}$	${\mathcal X}$	${\mathcal X}$

X	X	x	X	X	x	X	X	x
---	---	---	---	---	---	---	---	---

For
$$M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

External Regret(Lazy MWU) $\leq \epsilon$

Swap Regret =

$$= \frac{1}{d} (S_1 + S_2 + \cdots)$$

$$= \frac{1}{d} (S_1 - R_2 + \cdots)$$

$$\leq \frac{1}{d} (\epsilon + \epsilon + \cdots)$$

- $+ S_d R_1 + R_2 + \dots + R_d$
- $-S_2 R_3 + S_3 R_4 + \cdots)$
- $\cdot \cdot \frac{S_d}{S_d} \le \epsilon + \frac{1}{d}$

X	${\mathcal X}$	${\mathcal X}$

X	X	X	X	X	X	X	X	x
---	---	---	---	---	---	---	---	---

For
$$M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

External Regret(Lazy MWU) $\leq \epsilon$

For
$$d \ge \frac{1}{\epsilon}$$

Swap Regret =

$$= \frac{1}{d} (S_1 + S_2 + \cdots)$$

$$= \frac{1}{d} (S_1 - R_2 + \cdots)$$

$$\leq \frac{1}{d} (\epsilon + \epsilon + \cdots)$$

- $+ S_d R_1 + R_2 + \dots + R_d$
- $S_2 R_3 + S_3 R_4 + \cdots)$
- $\cdot \cdot S_d \leq \epsilon + \frac{1}{d}$

X	${\mathcal X}$	${\mathcal X}$

X	X	X	X	X	X	X	X	x
---	---	---	---	---	---	---	---	---

For
$$M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

External Regret(Lazy MWU) $\leq \epsilon$

For
$$d \ge \frac{1}{\epsilon}$$

Swap Regret = Swap Reward - Rew

$$= \frac{1}{d}(S_1 + S_2 + \dots + S_d - R_1 + R_2 + \dots + S_d)$$

$$= \frac{1}{d}(S_1 - R_2 + S_2 - R_3 + S_3 - R_4 + M_4)$$

$$\leq \frac{1}{d}(\epsilon + \epsilon + \dots + S_d) \leq \epsilon + \frac{1}{d} \leq 2\epsilon$$

- $(\cdot + R_d)$
- • •

${\mathcal X}$	${\mathcal X}$	X

X	X	X	X	X	x	X	X	x
---	---	---	---	---	---	---	---	---

For
$$M = \Omega\left(\frac{\log N}{\epsilon^2}\right)$$

External Regret(Lazy MWU) $\leq \epsilon$

For
$$d \ge \frac{1}{\epsilon}$$

Swap Regret =

$$= \frac{1}{d} (S_1 + S_2 + \cdots)$$

$$= \frac{1}{d} (S_1 - R_2 + \cdots)$$

$$\leq \frac{1}{d} (\epsilon + \epsilon + \cdots)$$

Thanks for listening!

Intuition? maxkfish.com

References: [DD@G23] <u>https://arxiv.org/pdf/2310.19786.pdf</u> [PR23] <u>https://arxiv.org/pdf/2310.19647.pdf</u>

Questions? maxfish@mit.edu

[BM07] https://www.jmlr.org/papers/volume8/blum07a/blum07a.pdf