## From External to Swap Regret 2.0: An Efficient Reduction for Large Action Spaces <br> Presentation by: Maxwell Fishelson

## Collaborators



Yuval Dagan


Costis Daskalakis


Maxwell Fishelson


Noah Golowich

## Collaborators



Yuval Dagan


Costis Daskalakis


Maxwell Fishelson


Noah Golowich

Concurrent work: Binghui Peng, Aviad Rubinstein [PR23]

No Swap Regret

No Swap Regret Online Learning

## No Swap Regret

 Online Learningwith many actions

# No Swap Regret 

## Online Learning

with many actions

## No Swap Regret

## Online Learning

with many actions

## No Swap Regret

## Online Learning

with many actions ?

## Online Learning

## Online Learning

$$
|A| B|c| O|E|
$$

## Online Learning



## Online Learning

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.1 | 0.3 | 0.9 | 0.5 | 0.7 |
| $\mathbf{2}$ | 0.8 | 0.4 | 0 | 0.2 | 0.3 |

## Online Learning

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.1 | 0.3 | 0.9 | 0.5 | 0.7 |
| $\mathbf{2}$ | 0.8 | 0.4 | 0 | 0.2 | 0.3 |
| $\mathbf{3}$ |  |  |  |  |  |

## Online Learning

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.1 | 0.3 | 0.9 | 0.5 | 0.7 |
| $\mathbf{2}$ | 0.8 | 0.4 | 0 | 0.2 | 0.3 |
| $\mathbf{3}$ |  |  |  |  |  |

## Online Learning

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.1 | 0.3 | 0.9 | 0.5 | 0.7 |
| $\mathbf{2}$ | 0.8 | 0.4 | 0 | 0.2 | 0.3 |
| $\mathbf{3}$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |

## Online Learning

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.1 | 0.3 | 0.9 | 0.5 | 0.7 |
| $\mathbf{2}$ | 0.8 | 0.4 | 0 | 0.2 | 0.3 |
| $\mathbf{3}$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |

$$
x^{(t)} \in \Delta_{N}
$$

## Online Learning

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.1 | 0.3 | 0.9 | 0.5 | 0.7 |
| $\mathbf{2}$ | 0.8 | 0.4 | 0 | 0.2 | 0.3 |
| $\mathbf{3}$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |

$$
\begin{aligned}
& x^{(t)} \in \Delta_{N} \\
& u^{(t)} \in[0,1]^{N}
\end{aligned}
$$

## Online Learning

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.1 | 0.3 | 0.9 | 0.5 | 0.7 |
| $\mathbf{2}$ | 0.8 | 0.4 | 0 | 0.2 | 0.3 |
| $\mathbf{3}$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |

$$
\begin{gathered}
x^{(t)} \in \Delta_{N} \\
u^{(t)} \in[0,1]^{N} \\
\text { Total Reward }=\sum_{t=1}^{T} x^{(t)} \cdot u^{(t)}
\end{gathered}
$$

## Online Learning

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 0.1 | 0.3 | 0.9 | 0.5 | 0.7 |
| $\mathbf{2}$ | 0.8 | 0.4 | 0 | 0.2 | 0.3 |
| $\mathbf{3}$ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |

$$
\begin{gathered}
x^{(t)} \in \Delta_{N} \\
u^{(t)} \in[0,1]^{N} \\
\text { Total Reward }=\sum_{t=1}^{T} x^{(t)} \cdot u^{(t)} \\
\text { Average Reward }=\frac{1}{T} \sum_{t=1}^{T} x^{(t)} \cdot u^{(t)}
\end{gathered}
$$

## Online vs Offline

## Online vs Offline

## Online: $u^{(t)} \leftarrow$ ©

## Online vs Offline

## Online: $u^{(t)} \leftarrow$ © <br> Offline: $u^{(t)} \sim D$

## Online vs Offline

$$
\text { Online: } u^{(t)} \leftarrow \text { © } \quad \text { Offline: } u^{(t)} \sim D
$$

## Games:

## Online vs Offline

$$
\text { Online: } u^{(t)} \leftarrow \text { © } \quad \text { Offline: } u^{(t)} \sim D
$$

## Games:



## Online vs Offline

$$
\text { Online: } u^{(t)} \leftarrow \text { © } \quad \text { Offline: } u^{(t)} \sim D
$$

## Games:



## Online vs Offline

$$
\text { Online: } u^{(t)} \leftarrow \text { © } \quad \text { Offline: } u^{(t)} \sim D
$$

## Games:



## Online vs Offline

$$
\text { Online: } u^{(t)} \leftarrow \text { © } \quad \text { Offline: } u^{(t)} \sim D
$$

## Games:



Regret

## Regret

regret = reward obtained vs benchmark

## Regret

regret = reward obtained vs benchmark


## Regret

regret = reward obtained vs benchmark


## Regret

regret $=$ reward obtained vs benchmark


## Regret

regret $=$ reward obtained vs benchmark


## Regret

regret = reward obtained vs benchmark


$$
\frac{1}{T} \sum_{t=1}^{T} x^{(t)} \cdot u^{(t)}
$$

## Regret

regret = reward obtained vs benchmark


$$
\frac{1}{T} \sum_{t=1}^{T} x^{(t)} \cdot u^{(t)}
$$

## Regret

regret = reward obtained vs benchmark


## Regret

regret = reward obtained vs benchmark


## Regret

regret = reward obtained vs benchmark

| $x^{(1)}$ | $u^{(1)}$ |
| :---: | :---: |
| $x^{(2)}$ | $u^{(2)}$ |
| $x^{(3)}$ | $u^{(3)}$ |
|  | $\vdots$ |
| $x^{(T)}$ | $u^{(T)}$ |

$$
\frac{1}{T} \sum_{t=1}^{T} x^{(t)} \cdot u^{(t)}
$$


$\frac{1}{T} \sum_{t=1}^{T} \phi\left(x^{(t)}\right) \cdot u^{(t)}$

## Regret

regret = reward obtained vs benchmark


## Regret

regret $=$ reward obtained vs benchmark


## External Regret

## External Regret

$\Phi=$ all constant maps

## External Regret

$\Phi=$ all constant maps


## External Regret

$\Phi=$ all constant maps

| $x^{(1)} \quad u^{(1)}$ |  | $x^{*} \quad u^{(1)}$ |
| :---: | :---: | :---: |
| $x^{(2)} \quad u^{(2)}$ |  | $x^{*} u^{(2)}$ |
| $x^{(3)} \quad u^{(3)}$ |  | $x^{*} u^{(3)}$ |
| $x^{(T)} \quad u^{(T)}$ |  | $x^{*} u^{(T)}$ |

Offline:


## External Regret

$\Phi=$ all constant maps

| $x^{(1)} \quad u^{(1)}$ |  | $x^{*} \quad u^{(1)}$ |
| :---: | :---: | :---: |
| $x^{(2)} \quad u^{(2)}$ |  | $x^{*} u^{(2)}$ |
| $x^{(3)} \quad u^{(3)}$ |  | $x^{*} u^{(3)}$ |
| $x^{(T)} \quad u^{(T)}$ |  | $x^{*} \quad u^{(T)}$ |

Offline:



## External Regret

$\Phi=$ all constant maps


Online setting: we can do better!

## Swap Regret

## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$

## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$

## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$



## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$



## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$



## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$



## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$

\(\left.\begin{array}{|cc|}\hline \mathbf{A} \& u^{(1)} <br>
\mathbf{B} \& u^{(2)} <br>
\mathbf{A} \& u^{(3)} <br>
\mathbf{B} \& u^{(4)} <br>

.5 \mathbf{A}+.5 \mathbf{B} \& u^{(5)}\end{array}\right] \xrightarrow{\phi}\)| $\mathbf{A}$ | $u^{(1)}$ |
| :---: | :---: |
| $\mathbf{C}$ | $u^{(2)}$ |
| $\mathbf{A}$ | $u^{(3)}$ |
| $\mathbf{C}$ | $u^{(4)}$ |
| $.5 \mathbf{A}+.5 \mathrm{C}$ | $u^{(5)}$ |



## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$

\(\left.\begin{array}{|cc|}\hline \mathbf{A} \& u^{(1)} <br>
\mathbf{B} \& u^{(2)} <br>
\mathbf{A} \& u^{(3)} <br>
\mathbf{B} \& u^{(4)} <br>

.5 \mathbf{A}+.5 \mathbf{B} \& u^{(5)}\end{array}\right] \xrightarrow{\phi}\)| $\mathbf{A}$ | $u^{(1)}$ |
| :---: | :---: |
| $\mathbf{C}$ | $u^{(2)}$ |
| $\mathbf{A}$ | $u^{(3)}$ |
| $\mathbf{C}$ | $u^{(4)}$ |
| $.5 \mathbf{A}+.5 \mathrm{C}$ | $u^{(5)}$ |



| $\phi$ |  |
| :---: | :---: |
| $\mathbf{A}$ | X |
| $\mathbf{B}$ | Y |
| $\mathbf{C}$ | Z |
| $\vdots$ | $\vdots$ |

## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$

\(\left.\begin{array}{|cc|}\hline \mathbf{A} \& u^{(1)} <br>
\mathbf{B} \& u^{(2)} <br>
\mathbf{A} \& u^{(3)} <br>
\mathbf{B} \& u^{(4)} <br>

.5 \mathbf{A}+.5 \mathrm{~B} \& u^{(5)}\end{array}\right] \xrightarrow{\phi}\)| $\mathbf{A}$ | $u^{(1)}$ |
| :---: | :---: |
| $\mathbf{C}$ | $u^{(2)}$ |
| $\mathbf{A}$ | $u^{(3)}$ |
| $\mathbf{C}$ | $u^{(4)}$ |
| $.5 \mathbf{A}+.5 \mathrm{C}$ | $u^{(5)}$ |

## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$

\(\left.\begin{array}{|cc|}\hline \mathbf{A} \& u^{(1)} <br>
\mathbf{B} \& u^{(2)} <br>
\mathbf{A} \& u^{(3)} <br>
\mathbf{B} \& u^{(4)} <br>

.5 A+.5 \mathbf{B} \& u^{(5)}\end{array}\right] \xrightarrow{\phi}\)| $\mathbf{A}$ | $u^{(1)}$ |
| :---: | :---: |
| $\mathbf{C}$ | $u^{(2)}$ |
| $\mathbf{A}$ | $u^{(3)}$ |
| $\mathbf{C}$ | $u^{(4)}$ |
| $.5 \mathrm{~A}+.5 \mathrm{C}$ | $u^{(5)}$ |

## Why?

## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$

\(\left.\begin{array}{|cc|}\hline \mathbf{A} \& u^{(1)} <br>
\mathbf{B} \& u^{(2)} <br>
\mathbf{A} \& u^{(3)} <br>
\mathbf{B} \& u^{(4)} <br>

.5 A+.5 B \& u^{(5)}\end{array}\right] \xrightarrow{\phi}\)| $\mathbf{A}$ | $u^{(1)}$ |
| :---: | :---: |
| $\mathbf{C}$ | $u^{(2)}$ |
| $\mathbf{A}$ | $u^{(3)}$ |
| $\mathbf{C}$ | $u^{(4)}$ |
| $.5 A+.5 C$ | $u^{(5)}$ |

## Why?

- $L_{2}$ Calibration


## Swap Regret

$$
\Phi=\text { all maps }[N] \rightarrow[N]
$$



## Why?

- $L_{2}$ Calibration
- Games!


## Learning in Games

## Learning in Games

## Learning in Games



## Learning in Games



## Learning in Games



## Learning in Games

## Learning in Games



## Learning in Games



## Learning in Games



## Learning in Games


$\epsilon$ external regret over $T$ rounds $\rightarrow$ average strategies are $\epsilon$ coarse-correlated-equilibrium

## Learning in Games


$\epsilon$ external regret over $T$ rounds $\rightarrow$ average strategies are $\epsilon$ coarse-correlated-equilibrium $\epsilon$ swap regret over $T$ rounds $\rightarrow$ average strategies are $\epsilon$ correlated-equilibrium

## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate

## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


Coarse Deviations


## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate



CCE: No player wants to make a coarse deviation

CE: No player wants to make a swap deviation

## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate



CCE: No player wants to make a coarse deviation

CE: No player wants to make a swap deviation

NE: No player wants to make a swap deviation AND profile must be independent

## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


Coarse Deviations


Swap
Deviations


CCE: No player wants to make a coarse deviation

CE: No player wants to make a swap deviation

NE: No player wants to make a swap deviation AND profile must be independent

## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate


## Learning in Games

## Game Equilibrium: Strategy profile where no player wants to deviate



## Learning in Games

## Game Equilibrium: Strategy profile where no player wants to deviate



## Learning in Games

## Game Equilibrium: Strategy profile where no player wants to deviate



## Learning in Games

## Game Equilibrium: Strategy profile where no player wants to deviate



## Swap Deviation <br> 

## Learning in Games

## Game Equilibrium: Strategy profile where no player wants to deviate



## Learning in Games

## Game Equilibrium: Strategy profile where no player wants to deviate



## Learning in Games

## Game Equilibrium: Strategy profile where no player wants to deviate



## Learning in Games

Game Equilibrium: Strategy profile where no player wants to deviate



Coarse Deviation


## So why not Swap Regret?

## So why not Swap Regret?

Multiplicative Weight Updates: $\epsilon$-External-Regret for $T=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)$

## So why not Swap Regret?

Multiplicative Weight Updates: $\epsilon$-External-Regret for $T=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)$

$$
\text { Blum-Mansour MWU [BM07]: } \epsilon \text {-Swap-Regret for } T=\Omega\left(\frac{N \log N}{\epsilon^{2}}\right)
$$

## So why not Swap Regret?

Multiplicative Weight Updates: $\epsilon$-External-Regret for $T=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)$
Blum-Mansour MWU [BM07]: $\epsilon$-Swap-Regret for $T=\Omega\left(\frac{N \log N}{\epsilon^{2}}\right)$

Question: can we improve for large $N$ ?

## So why not Swap Regret?

Multiplicative Weight Updates: $\epsilon$-External-Regret for $T=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)$

$$
\text { Blum-Mansour MWU [BM07]: } \epsilon \text {-Swap-Regret for } T=\Omega\left(\frac{N \log N}{\epsilon^{2}}\right)
$$

Question: can we improve for large $N$ ?
YES [DDaG23]

Main Results

## Main Results

- Tree-Swap: $\epsilon$-Swap-Regret for $T=\log (N)^{\tilde{\Omega}(1 / \epsilon)}$


## Main Results

- Tree-Swap: $\epsilon$-Swap-Regret for $T=\log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Tree-Swap: $\epsilon$-Swap-Regret for $T=$ Littlestone $\operatorname{Dimension}(\mathscr{F})^{\tilde{\Omega}(1 / \epsilon)}$


## Main Results

- Tree-Swap: $\epsilon$-Swap-Regret for $T=\log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Tree-Swap: $\epsilon$-Swap-Regret for $T=$ Littlestone $\operatorname{Dimension}(\mathscr{F})^{\tilde{\Omega}(1 / \epsilon)}$
- Bandit-Tree-Swap: $\epsilon$-Swap-Regret for $T=N \log (N)^{\tilde{\Omega}(1 / \epsilon)}$


## Main Results

- Tree-Swap: $\epsilon$-Swap-Regret for $T=\log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Tree-Swap: $\epsilon$-Swap-Regret for $T=\operatorname{Littlestone} \operatorname{Dimension}(\mathscr{F})^{\tilde{\Omega}(1 / \epsilon)}$
- Bandit-Tree-Swap: $\epsilon$-Swap-Regret for $T=N \log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Communication Complexity of $\epsilon$-CE: $\log (N)^{\tilde{\Omega}(1 / \epsilon)}$


## Main Results

- Tree-Swap: $\epsilon$-Swap-Regret for $T=\log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Tree-Swap: $\epsilon$-Swap-Regret for $T=\operatorname{Littlestone} \operatorname{Dimension}(\mathscr{F})^{\tilde{\Omega}(1 / \epsilon)}$
- Bandit-Tree-Swap: $\epsilon$-Swap-Regret for $T=N \log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Communication Complexity of $\epsilon$-CE: $\log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Query Complexity of $\epsilon$-CE: $N \log (N)^{\tilde{\Omega}(1 / \epsilon)}$


## Main Results

- Tree-Swap: $\epsilon$-Swap-Regret for $T=\log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Tree-Swap: $\epsilon$-Swap-Regret for $T=\operatorname{Littlestone} \operatorname{Dimension}(\mathscr{F})^{\tilde{\Omega}(1 / \epsilon)}$
- Bandit-Tree-Swap: $\epsilon$-Swap-Regret for $T=N \log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Communication Complexity of $\epsilon$-CE: $\log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Query Complexity of $\epsilon$-CE: $N \log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Extensive Form $\epsilon$-CE: $\operatorname{poly}(m, I, A)$ for $\epsilon=\Omega(1)$


## Main Results

- Tree-Swap: $\epsilon$-Swap-Regret for $T=\log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Tree-Swap: $\epsilon$-Swap-Regret for $T=\operatorname{Littlestone} \operatorname{Dimension}(\mathscr{F})^{\tilde{\Omega}(1 / \epsilon)}$
- Bandit-Tree-Swap: $\epsilon$-Swap-Regret for $T=N \log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Communication Complexity of $\epsilon$-CE: $\log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Query Complexity of $\epsilon$-CE: $N \log (N)^{\tilde{\Omega}(1 / \epsilon)}$
- Extensive Form $\epsilon$-CE: $\operatorname{poly}(m, I, A)$ for $\epsilon=\Omega(1)$


Main Results

## Main Results

Lower Bounds

## Main Results

## Lower Bounds

- Tree-Adversary: Force learner to incur Swap Regret $\geq \epsilon$ for $T=O(1) \cdot \min \left\{\exp \left(\epsilon^{-1 / 6}\right), \frac{N}{\operatorname{poly} \log (N) \cdot \epsilon^{2}}\right\}$


## Main Results

## Lower Bounds

- Tree-Adversary: Force learner to incur Swap Regret $\geq \epsilon$ for $T=O(1) \cdot \min \left\{\exp \left(\epsilon^{-1 / 6}\right), \frac{N}{\operatorname{poly} \log (N) \cdot \epsilon^{2}}\right\}$
- Oblivious


## Main Results

## Lower Bounds

- Tree-Adversary: Force learner to incur Swap Regret $\geq \epsilon$ for $T=O(1) \cdot \min \left\{\exp \left(\epsilon^{-1 / 6}\right), \frac{N}{\operatorname{poly} \log (N) \cdot \epsilon^{2}}\right\}$
- Oblivious
- Point functions: Littlestone Dimension 1


## Main Results

## Lower Bounds

- Tree-Adversary: Force learner to incur Swap Regret $\geq \epsilon$ for $T=O(1) \cdot \min \left\{\exp \left(\epsilon^{-1 / 6}\right), \frac{N}{\operatorname{poly} \log (N) \cdot \epsilon^{2}}\right\}$
- Oblivious
- Point functions: Littlestone Dimension 1
- Slide-Adversary: Force learner to incur Swap Regret $\geq \epsilon$ for $T=\exp \left(O(1) \cdot \epsilon^{-1 / 3}\right)$


## Algorithms

## External Regret

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)


## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

$$
\begin{array}{r}
u^{(1)} \\
u^{(2)} \\
\vdots \\
+u^{(t-1)} \\
U^{(t-1)}
\end{array}
$$

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

$$
\begin{gathered}
u^{(1)} \\
u^{(2)} \\
\vdots \\
+\frac{u^{(t-1)}}{U^{(t-1)}}=[60,120,90]
\end{gathered}
$$

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

$$
\begin{gathered}
\begin{array}{c}
u^{(1)} \\
u^{(2)} \\
\vdots \\
+u^{(t-1)} \\
U^{(t-1)}
\end{array}=[60,120,90]
\end{gathered}
$$

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

$$
\begin{array}{rr}
u^{(1)} & \\
u^{(2)} & x^{(t)}=\operatorname{Softmax}\left(\eta U^{(t-1)}\right) \\
\vdots & \\
+u^{(t-1)} &
\end{array}
$$

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards | Actions |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards |  |
| :---: | :---: |
| $U^{(0)}$ |  |
|  |  |
|  |  |
|  |  |
|  |  |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards | Actions |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
|  |  |
|  |  |
|  |  |
|  |  |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards |  |
| :---: | :---: |
| $U^{(0)}$ | Actions |
| $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |  |
| $U^{(0)}+u^{(1)}=U^{(1)}$ |  |
|  |  |
|  |  |
|  |  |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards |  |
| :---: | :---: |
| $U^{(0)}$ | Actions |
| $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |  |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(2)}=\operatorname{Softmax}\left(\eta U^{(1)}\right)$ |
|  |  |
|  |  |
|  |  |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards |  |
| :---: | :---: |
| $U^{(0)}$ | Actions |
| $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |  |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(2)}=\operatorname{Softmax}\left(\eta U^{(1)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ |  |
|  |  |
|  |  |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards |  |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(2)}=\operatorname{Softmax}\left(\eta U^{(1)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ | $x^{(3)}=\operatorname{Softmax}\left(\eta U^{(2)}\right)$ |
|  |  |
|  |  |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards | Actions |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(2)}=\operatorname{Softmax}\left(\eta U^{(1)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ | $x^{(3)}=\operatorname{Softmax}\left(\eta U^{(2)}\right)$ |
| $U^{(2)}+u^{(3)}=U^{(3)}$ |  |
|  |  |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards | Actions |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(2)}=\operatorname{Softmax}\left(\eta U^{(1)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ | $x^{(3)}=\operatorname{Softmax}\left(\eta U^{(2)}\right)$ |
| $U^{(2)}+u^{(3)}=U^{(3)}$ | $x^{(4)}=\operatorname{Softmax}\left(\eta U^{(3)}\right)$ |
|  |  |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards | Actions |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(2)}=\operatorname{Softmax}\left(\eta U^{(1)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ | $x^{(3)}=\operatorname{Softmax}\left(\eta U^{(2)}\right)$ |
| $U^{(2)}+u^{(3)}=U^{(3)}$ | $x^{(4)}=\operatorname{Softmax}\left(\eta U^{(3)}\right)$ |
| $U^{(3)}+u^{(4)}=U^{(4)}$ |  |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards | Actions |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(2)}=\operatorname{Softmax}\left(\eta U^{(1)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ | $x^{(3)}=\operatorname{Softmax}\left(\eta U^{(2)}\right)$ |
| $U^{(2)}+u^{(3)}=U^{(3)}$ | $x^{(4)}=\operatorname{Softmax}\left(\eta U^{(3)}\right)$ |
| $U^{(3)}+u^{(4)}=U^{(4)}$ | $x^{(5)}=\operatorname{Softmax}\left(\eta U^{(4)}\right)$ |

## External Regret

Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards | Actions |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity)

| Rewards | Actions |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards | Actions |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards |  |
| :---: | :---: |
| $U^{(0)}$ | Actions |
|  |  |
|  |  |
|  |  |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards | Actions |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
|  |  |
|  |  |
|  |  |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards |  |
| :---: | :---: |
| $U^{(0)}$ | Actions |
| $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |  |
| $U^{(0)}+u^{(1)}=U^{(1)}$ |  |
|  |  |
|  |  |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards |  |
| :---: | :---: |
| $U^{(0)}$ | Actions |
| $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |  |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
|  |  |
|  |  |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards |  |
| :---: | :---: |
| $U^{(0)}$ | Actions |
| $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |  |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ |  |
|  |  |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards |  |
| :---: | :---: |
| $U^{(0)}$ | Actions |
| $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |  |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
|  |  |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards | Actions |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(2)}+u^{(3)}=U^{(3)}$ |  |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards | Actions |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(2)}+u^{(3)}=U^{(3)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
|  |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards | Actions |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(2)}+u^{(3)}=U^{(3)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(3)}+u^{(4)}=U^{(4)}$ |  |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

| Rewards | Actions |
| :---: | :---: |
| $U^{(0)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(0)}+u^{(1)}=U^{(1)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(1)}+u^{(2)}=U^{(2)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(2)}+u^{(3)}=U^{(3)}$ | $x^{(1)}=\operatorname{Softmax}\left(\eta U^{(0)}\right)$ |
| $U^{(3)}+u^{(4)}=U^{(4)}$ | $x^{(5)}=\operatorname{Softmax}\left(\eta U^{(4)}\right)$ |

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$\square$

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds


## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{aligned}
& 0 \\
& \begin{array}{|ll|l|l|l|l}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} & T=B M \\
\hline
\end{array} \\
& U^{(0)} \quad U^{(B)}
\end{aligned}
$$

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{aligned}
& 0 \\
& \begin{array}{|ll|l|l|l|l|}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} & T=B M \\
\hline
\end{array} \\
& U^{(0)} \quad U^{(B)}
\end{aligned}
$$

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{aligned}
& 0 \\
& \begin{array}{|ll|l|l|l|l|}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} \mid x^{(3 B)} x^{(3 B)} x^{(3 B)} & T=B M \\
\hline
\end{array} \\
& \begin{array}{l}
U^{(0)} \quad U^{(B)}
\end{array}
\end{aligned}
$$

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{aligned}
& 0 \\
& \begin{array}{|ll|l|l|l|l|}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} \mid x^{(3 B)} x^{(3 B)} x^{(3 B)} & \cdots \\
\hline
\end{array} \\
& \begin{array}{l}
U^{(0)} \quad U^{(B)}
\end{array}
\end{aligned}
$$

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{aligned}
& 0 \\
& \begin{array}{|ll|l|l|l|l|}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} x^{(3 B)} x^{(3 B)} x^{(3 B)} & \cdots \\
\hline
\end{array} \\
& \begin{array}{l}
U^{(0)} \quad U^{(B)}
\end{array}
\end{aligned}
$$

MWU: $\epsilon$-external-regret for $T=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)$

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{aligned}
& 0 \\
& \begin{array}{ll}
\begin{array}{|l|l|l|l|}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} \mid x^{(3 B)} x^{(3 B)} x^{(3 B)} & \cdots \\
U^{(0)} & U^{(B)} & U^{(2 B)} & B M \\
\text { MWU: } \epsilon \text {-external-regret for } T=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)
\end{array} \\
\text { Lazy MWU: } \epsilon \text {-external-regret for } M=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)
\end{array}
\end{aligned}
$$

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{aligned}
& 0 \\
& \begin{array}{|l|l|l|l|l|}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} & x^{(3 B)} x^{(3 B)} x^{(3 B)} & \cdots \\
U^{(0)} & U^{(2 B)} & U^{(3 B)} \\
\hline
\end{array} \\
& \text { MWU: } \epsilon \text {-external-regret for } T=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)
\end{aligned}
$$

## Why?

## External Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{aligned}
& 0 \\
& \begin{array}{|l|l|l|l|l|}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} & x^{(3 B)} x^{(3 B)} x^{(3 B)} & \cdots \\
U^{(0)} & U^{(2 B)} & U^{(3 B)} \\
\hline
\end{array} \\
& \text { MWU: } \epsilon \text {-external-regret for } T=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)
\end{aligned}
$$

## Why?

## Fewer Actions

## Swap Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{array}{|l|l|l|l|l|}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} & x^{(3 B)} x^{(3 B)} x^{(3 B)} & \ldots \\
\hline
\end{array}
$$

## Swap Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{array}{|l|l|l|l|l|}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} & x^{(3 B)} x^{(3 B)} x^{(3 B)} & \ldots \\
\hline
\end{array}
$$

$\phi \downarrow$

## Swap Regret

Lazy Multiplicative Weight Updates: Look at the history, do the best thing (with some regularity) every few rounds

$$
\begin{array}{|ll|ll|l|l|l|}
\hline x^{(0)} x^{(0)} x^{(0)} & x^{(B)} x^{(B)} x^{(B)} & x^{(2 B)} x^{(2 B)} x^{(2 B)} & x^{(3 B)} x^{(3 B)} x^{(3 B)} & \ldots \\
\hline
\end{array}
$$



$$
\begin{array}{|l|l|l|l|l|}
\hline s^{(0)} s^{(0)} s^{(0)} & s^{(B)} s^{(B)} s^{(B)} & s^{(2 B)} s^{(2 B)} s^{(2 B)} & s^{(3 B)} s^{(3 B)} s^{(3 B)} & \ldots \\
\hline
\end{array}
$$

Tree-Swap

Tree-Swap

$$
T=M^{d}
$$

## Tree-Swap

$$
T=M^{d}
$$



## Tree-Swap

$$
T=M^{d}
$$



## Tree-Swap

$$
T=M^{d}
$$


$M$ Lazy-MWU instances: $\left[0, M^{d-1}\right],\left[M^{d-1}, 2 M^{d-1}\right], \cdots$ $\square$
$M^{2}$ Lazy-MWU instances: $\left[0, M^{d-2}\right],\left[M^{d-2}, 2 M^{d-2}\right], \cdots$ $\square$

## Tree-Swap

$$
T=M^{d}
$$


$M$ Lazy-MWU instances: $\left[0, M^{d-1}\right],\left[M^{d-1}, 2 M^{d-1}\right], \cdots$ $\square$
$M^{2}$ Lazy-MWU instances: $\left[0, M^{d-2}\right],\left[M^{d-2}, 2 M^{d-2}\right], \cdots$

:
$M^{d-1}$ Lazy-MWU instances: $[0, M],[M, 2 M], \ldots$


## Tree-Swap



## Tree-Swap



## Tree-Swap Swap Regret

## Tree-Swap Swap Regret


$[x|x| x|x| x|x| x|x| x$

:

## Tree-Swap Swap Regret


|||||||||||||||||

## Tree-Swap Swap Regret


|||||||||||||||||

## Tree-Swap Swap Regret




## Tree-Swap Swap Regret




## Tree-Swap Swap Regret




## Tree-Swap Swap Regret


 :

## Tree-Swap Swap Regret


 :

## Tree-Swap Swap Regret


|||||||||||||||| :

## Tree-Swap Swap Regret


 :

## Tree-Swap Swap Regret


 :

## Tree-Swap Swap Regret


 :

## Tree-Swap Swap Regret


$\square$
 :

## Tree-Swap Swap Regret


 :

## Tree-Swap Swap Regret


$\square$
 :

## Tree-Swap Swap Regret


$\square$
$\square$ $\vdots$

## Tree-Swap Swap Regret


 :

## Tree-Swap Swap Regret



| $x$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


:
 :

## Tree-Swap Swap Regret



| $x$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



Swap Regret $\leq$ Swap Reward - Reward

## Tree-Swap Swap Regret



| $x$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



Swap Regret $\leq$ Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$

## Tree-Swap Swap Regret



| $x$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| $S$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



Swap Regret $\leq$ Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$
$=\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right)$

## Tree-Swap Swap Regret



| $x$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| $S$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



Swap Regret $\leq$ Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$
$=\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right)$

## Tree-Swap Swap Regret



Swap Regret = Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$
$=\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right)$

## Tree-Swap Swap Regret



Swap Regret = Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$
$=\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right)$

## Tree-Swap Swap Regret



Swap Regret = Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$
$=\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right)$

## Tree-Swap Swap Regret



Swap Regret = Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$
$=\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right)$
$\leq$ average of external regret of row 2 Lazy-MWU

## Tree-Swap Swap Regret



For $M=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)$
External Regret(Lazy MWU) $\leq \epsilon$

Swap Regret = Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$
$=\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right)$
$\leq$ average of external regret of row 2 Lazy-MWU

## Tree-Swap Swap Regret



For $M=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)$
External Regret(Lazy MWU) $\leq \epsilon$

Swap Regret = Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$
$=\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right)$
$\leq$ average of external regret of row 2 Lazy-MWU $\leq \epsilon$

## Tree-Swap Swap Regret



For $M=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)$
External Regret(Lazy MWU) $\leq \epsilon$

Swap Regret = Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$
$\left.=\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{2}\right)+S_{3}-R_{4}+\cdots\right)$
$\leq \epsilon$

## Tree-Swap Swap Regret



For $M=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)$
External Regret(Lazy MWU) $\leq \epsilon$

Swap Regret = Swap Reward - Reward
$=\frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right)$
$\left.=\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{2}\right)+S_{3}-R_{4}+\cdots\right)$

$$
\leq \epsilon \quad \leq \epsilon
$$

## Tree-Swap Swap Regret



## Tree-Swap Swap Regret



## Tree-Swap Swap Regret



$$
\text { For } M=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)
$$

External Regret(Lazy MWU) $\leq \epsilon$

Swap Regret = Swap Reward - Reward

$$
\begin{aligned}
= & \frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right) \\
& =\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right) \\
& \leq \frac{1}{d}\left(\epsilon+\epsilon+\cdots S_{d}\right)
\end{aligned}
$$

## Tree-Swap Swap Regret



$$
\text { For } M=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)
$$

External Regret(Lazy MWU) $\leq \epsilon$

Swap Regret = Swap Reward - Reward

$$
\begin{aligned}
= & \frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right) \\
& =\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right) \\
& \leq \frac{1}{d}\left(\epsilon+\epsilon+\cdots S_{d}\right) \leq \epsilon+\frac{1}{d}
\end{aligned}
$$

## Tree-Swap Swap Regret



$$
\text { For } M=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)
$$

External Regret(Lazy MWU) $\leq \epsilon$

For $d \geq \frac{1}{\epsilon}$

Swap Regret $=$ Swap Reward - Reward

$$
\begin{aligned}
= & \frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right) \\
& =\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right) \\
& \leq \frac{1}{d}\left(\epsilon+\epsilon+\cdots S_{d}\right) \leq \epsilon+\frac{1}{d}
\end{aligned}
$$

## Tree-Swap Swap Regret



$$
\text { For } M=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)
$$

External Regret(Lazy MWU) $\leq \epsilon$

For $d \geq \frac{1}{\epsilon}$

Swap Regret $=$ Swap Reward - Reward

$$
\begin{aligned}
= & \frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right) \\
& =\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right) \\
& \leq \frac{1}{d}\left(\epsilon+\epsilon+\cdots S_{d}\right) \leq \epsilon+\frac{1}{d} \leq 2 \epsilon
\end{aligned}
$$

## Tree-Swap Swap Regret



$$
\text { For } M=\Omega\left(\frac{\log N}{\epsilon^{2}}\right)
$$

External Regret(Lazy MWU) $\leq \epsilon$

For $d \geq \frac{1}{\epsilon}$
Swap Regret = Swap Reward - Reward

$$
\begin{aligned}
= & \frac{1}{d}\left(S_{1}+S_{2}+\cdots+S_{d}-R_{1}+R_{2}+\cdots+R_{d}\right) \\
& =\frac{1}{d}\left(S_{1}-R_{2}+S_{2}-R_{3}+S_{3}-R_{4}+\cdots\right) \\
& \leq \frac{1}{d}\left(\epsilon+\epsilon+\cdots S_{d}\right) \leq \epsilon+\frac{1}{d} \leq 2 \epsilon
\end{aligned}
$$

For $T=M^{d}=\left(\frac{\log N}{\epsilon^{2}}\right)^{\Omega(1 / \epsilon)}$
Swap Regret(Tree-Swap) $\leq \epsilon$

# Thanks for listening! 

Questions? maxfish@mit.edu

## Intuition? maxkfish.com

References:<br>[DDaG23] https://arxiv.org/pdf/2310.19786.pdf<br>[PR23] https://arxiv.org/pdf/2310.19647.pdf<br>[BM07] https://www.jmlr.org/papers/volume8/blum07a/blum07a.pdf

